Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Nicholas J. Wareham
Based on 8 articles published since 2010
(Why 8 articles?)
||||

Between 2010 and 2020, Nicholas Wareham wrote the following 8 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition. 2020

Obón-Santacana, Mireia / Luján-Barroso, Leila / Freisling, Heinz / Naudin, Sabine / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Rebours, Vinciane / Kühn, Tilman / Katzke, Verena / Boeing, Heiner / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Lasheras, Cristina / Rodríguez-Barranco, Miguel / Amiano, Pilar / Santiuste, Carmen / Ardanaz, Eva / Khaw, Kay-Thee / Wareham, Nicholas J / Schmidt, Julie A / Aune, Dagfinn / Trichopoulou, Antonia / Thriskos, Paschalis / Peppa, Eleni / Masala, Giovanna / Grioni, Sara / Tumino, Rosario / Panico, Salvatore / Bueno-de-Mesquita, Bas / Sciannameo, Veronica / Vermeulen, Roel / Sonestedt, Emily / Sund, Malin / Weiderpass, Elisabete / Skeie, Guri / González, Carlos A / Riboli, Elio / Duell, Eric J. ·Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Department of Nursing of Public Health, Mental Health and Maternity and Child Health School of Nursing, Universitat de Barcelona, Barcelona, Spain. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France. · Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, DHU Unity, AP-HP, Clichy, and Paris-Diderot University, Paris, France. · Inserm UMR1149, DHU Unity, and Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Reserach Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Hellenic Health Foundation, Athens, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M. P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Unit of Epidemiology, Regional Health Service ASL TO3, Turin, Italy. · Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands. · Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · International Agency for Research on Cancer, Lyon, France. · Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. ·Int J Cancer · Pubmed #31107546.

ABSTRACT: Four epidemiologic studies have assessed the association between nut intake and pancreatic cancer risk with contradictory results. The present study aims to investigate the relation between nut intake (including seeds) and pancreatic ductal adenocarcinoma (PDAC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Cox proportional hazards models were used to estimate hazards ratio (HR) and 95% confidence intervals (95% CI) for nut intake and PDAC risk. Information on intake of nuts was obtained from the EPIC country-specific dietary questionnaires. After a mean follow-up of 14 years, 476,160 participants were eligible for the present study and included 1,283 PDAC cases. No association was observed between consumption of nuts and PDAC risk (highest intake vs nonconsumers: HR, 0.89; 95% CI, 0.72-1.10; p-trend = 0.70). Furthermore, no evidence for effect-measure modification was observed when different subgroups were analyzed. Overall, in EPIC, the highest intake of nuts was not statistically significantly associated with PDAC risk.

2 Article TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. 2015

Campa, Daniele / Rizzato, Cosmeri / Stolzenberg-Solomon, Rachael / Pacetti, Paola / Vodicka, Pavel / Cleary, Sean P / Capurso, Gabriele / Bueno-de-Mesquita, H B As / Werner, Jens / Gazouli, Maria / Butterbach, Katja / Ivanauskas, Audrius / Giese, Nathalia / Petersen, Gloria M / Fogar, Paola / Wang, Zhaoming / Bassi, Claudio / Ryska, Miroslav / Theodoropoulos, George E / Kooperberg, Charles / Li, Donghui / Greenhalf, William / Pasquali, Claudio / Hackert, Thilo / Fuchs, Charles S / Mohelnikova-Duchonova, Beatrice / Sperti, Cosimo / Funel, Niccola / Dieffenbach, Aida Karina / Wareham, Nicholas J / Buring, Julie / Holcátová, Ivana / Costello, Eithne / Zambon, Carlo-Federico / Kupcinskas, Juozas / Risch, Harvey A / Kraft, Peter / Bracci, Paige M / Pezzilli, Raffaele / Olson, Sara H / Sesso, Howard D / Hartge, Patricia / Strobel, Oliver / Małecka-Panas, Ewa / Visvanathan, Kala / Arslan, Alan A / Pedrazzoli, Sergio / Souček, Pavel / Gioffreda, Domenica / Key, Timothy J / Talar-Wojnarowska, Renata / Scarpa, Aldo / Mambrini, Andrea / Jacobs, Eric J / Jamroziak, Krzysztof / Klein, Alison / Tavano, Francesca / Bambi, Franco / Landi, Stefano / Austin, Melissa A / Vodickova, Ludmila / Brenner, Hermann / Chanock, Stephen J / Delle Fave, Gianfranco / Piepoli, Ada / Cantore, Maurizio / Zheng, Wei / Wolpin, Brian M / Amundadottir, Laufey T / Canzian, Federico. ·Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD. · Oncology Department, ASL1 Massa Carrara, Massa Carrara, Italy. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of Czech Republic, Prague, Czech Republic. · Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada. · Digestive and Liver Disease Unit, S. Andrea Hospital, 'Sapienza' University of Rome, Rome, Italy. · Department of Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Department of Basic Medical Science, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN. · Department of Laboratory Medicine, University Hospital of Padua, Padua, Italy. · Surgical and Oncological Department, Pancreas Institute - University and Hospital Trust of Verona, Verona, Italy. · Department of Surgery, Second Faculty of Medicine, Charles University in Prague and Central Military Hospital, Prague, Czech Republic. · 1st Department of Propaedeutic Surgery, School of Medicine, University of Athens, Athens, Greece. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA. · Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX. · National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Department of Surgery, Gastroenterology and Oncology (DISCOG), University of Padua, Padua, Italy. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA. · Department of Oncology, Palacky University Medical School and Teaching Hospital in Olomouc, Olomouc, Czech Republic. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · German Cancer Consortium (DKTK), Heidelberg, Germany. · MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom. · Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. · Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. · Department of Medicine - DIMED, University of Padua, Padua, Italy. · Department of Epidemiology and Public Health, Yale School of Public Health, New Haven, CT. · Department of Epidemiology, Harvard School of Public Health, Boston, MA. · Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY. · Department of Digestive Tract Diseases, Medical University of Łodz, Łodz, Poland. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD. · Division of Epidemiology, Departments of Obstetrics and Gynecology, Environmental Medicine, and Population Health, New York University School of Medicine, New York, NY. · Surgical Clinic 4, University of Padua, Padua, Italy. · Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo Della Sofferenza,", San Giovanni Rotondo, Italy. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Epidemiology Research Program, American Cancer Society, Atlanta, GA. · Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland. · Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD. · Blood Transfusion Service, Azienda Ospedaliero Universitaria Meyer, Florence, Italy. · Department of Biology, University of Pisa, Pisa, Italy. · Department of Epidemiology, University of Washington, Seattle, WA. · Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN. ·Int J Cancer · Pubmed #25940397.

ABSTRACT: A small number of common susceptibility loci have been identified for pancreatic cancer, one of which is marked by rs401681 in the TERT-CLPTM1L gene region on chromosome 5p15.33. Because this region is characterized by low linkage disequilibrium, we sought to identify whether additional single nucleotide polymorphisms (SNPs) could be related to pancreatic cancer risk, independently of rs401681. We performed an in-depth analysis of genetic variability of the telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC) genes, in 5,550 subjects with pancreatic cancer and 7,585 controls from the PANcreatic Disease ReseArch (PANDoRA) and the PanScan consortia. We identified a significant association between a variant in TERT and pancreatic cancer risk (rs2853677, odds ratio = 0.85; 95% confidence interval = 0.80-0.90, p = 8.3 × 10(-8)). Additional analysis adjusting rs2853677 for rs401681 indicated that the two SNPs are independently associated with pancreatic cancer risk, as suggested by the low linkage disequilibrium between them (r(2) = 0.07, D' = 0.28). Three additional SNPs in TERT reached statistical significance after correction for multiple testing: rs2736100 (p = 3.0 × 10(-5) ), rs4583925 (p = 4.0 × 10(-5) ) and rs2735948 (p = 5.0 × 10(-5) ). In conclusion, we confirmed that the TERT locus is associated with pancreatic cancer risk, possibly through several independent variants.

3 Article Leukocyte telomere length in relation to pancreatic cancer risk: a prospective study. 2014

Campa, Daniele / Mergarten, Björn / De Vivo, Immaculata / Boutron-Ruault, Marie-Christine / Racine, Antoine / Severi, Gianluca / Nieters, Alexandra / Katzke, Verena A / Trichopoulou, Antonia / Yiannakouris, Nikos / Trichopoulos, Dimitrios / Boeing, Heiner / Quirós, J Ramón / Duell, Eric J / Molina-Montes, Esther / Huerta, José María / Ardanaz, Eva / Dorronsoro, Miren / Khaw, Kay-Tee / Wareham, Nicholas / Travis, Ruth C / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Vineis, Paolo / Riboli, Elio / Siddiq, Afshan / Bueno-de-Mesquita, H B / Peeters, Petra H / Nilsson, Peter M / Sund, Malin / Ye, Weimin / Lund, Eiliv / Jareid, Mie / Weiderpass, Elisabete / Duarte-Salles, Talita / Kong, So Yeon / Stepien, Magdalena / Canzian, Federico / Kaaks, Rudolf. ·Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts. · Institut National de la Santé et de la Recherche Médicale (INSERM), Centre for research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones, and Women's Health team, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. IGR, Villejuif, France. · Human Genetics Foundation (HuGeF), Torino, Italy. · Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany. · Hellenic Health Foundation, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. · Hellenic Health Foundation, Athens, Greece. Harokopio University of Athens, Greece. · Hellenic Health Foundation, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition, Environment, and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria de Granada (Granada.ibs), Granada, Spain. CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Navarre Public Health Institute, Pamplona, Spain. · Public Health Direction and Biodonostia-Ciberesp Basque Regional Health Department, San Sebastian, Spain. · University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom. · Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute, ISPO, Florence, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Dipartimento Di Medicina Clinica e Chirurgia Federico II University, Naples, Italy. · Division of Epidemiology, Public Health and Primary Care, Imperial College, London, United Kingdom. · Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom. · National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. The School of Public Health, Imperial College London, London, United Kingdom. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands. · Lund University, Department of Clinical Sciences, Skåne University Hospital, Malmö Sweden. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway. · Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Samfundet Folkhälsan, Helsinki, Finland. · International Agency for Research on Cancer (IARC-WHO), Lyon, France. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. r.kaaks@dkfz.de. ·Cancer Epidemiol Biomarkers Prev · Pubmed #25103821.

ABSTRACT: BACKGROUND: Several studies have examined leukocyte telomere length (LTL) as a possible predictor for cancer at various organ sites. The hypothesis originally motivating many of these studies was that shorter telomeres would be associated with an increase in cancer risk; the results of epidemiologic studies have been inconsistent, however, and suggested positive, negative, or null associations. Two studies have addressed the association of LTL in relation to pancreatic cancer risk and the results are contrasting. METHODS: We measured LTL in a prospective study of 331 pancreatic cancer cases and 331 controls in the context of the European Prospective Investigation into Cancer and Nutrition (EPIC). RESULTS: We observed that the mean LTL was higher in cases (0.59 ± 0.20) than in controls (0.57 ± 0.17), although this difference was not statistically significant (P = 0.07), and a basic logistic regression model showed no association of LTL with pancreas cancer risk. When adjusting for levels of HbA1c and C-peptide, however, there was a weakly positive association between longer LTL and pancreatic cancer risk [OR, 1.13; 95% confidence interval (CI), 1.01-1.27]. Additional analyses by cubic spline regression suggested a possible nonlinear relationship between LTL and pancreatic cancer risk (P = 0.022), with a statistically nonsignificant increase in risk at very low LTL, as well as a significant increase at high LTL. CONCLUSION: Taken together, the results from our study do not support LTL as a uniform and strong predictor of pancreatic cancer. IMPACT: The results of this article can provide insights into telomere dynamics and highlight the complex relationship between LTL and pancreatic cancer risk.

4 Article Dietary antioxidants and the aetiology of pancreatic cancer: a cohort study using data from food diaries and biomarkers. 2013

Banim, Paul J R / Luben, Robert / McTaggart, Alison / Welch, Ailsa / Wareham, Nicholas / Khaw, Kay-Tee / Hart, Andrew R. ·Department of Medicine, University of East Anglia, Norwich, UK. ·Gut · Pubmed #22826513.

ABSTRACT: OBJECTIVE: To investigate whether the dietary antioxidants vitamins C and E, selenium and zinc decrease the risk of developing pancreatic cancer, for the first time using 7-day food diaries, the most accurate dietary methodology in prospective work. DESIGN: 23,658 participants, aged 40-74 years, recruited into the EPIC-Norfolk Study completed 7-day food diaries which recorded foods, brands and portion sizes. Nutrient intakes were calculated in those later diagnosed with pancreatic cancer and in 3970 controls, using a computer program with information on 11,000 foods. Vitamin C was measured in serum samples. The HRs of developing pancreatic cancer were estimated across quartiles of intake and thresholds of the lowest quartile (Q1) against a summation of the three highest (Q2-4). RESULTS: Within 10 years, 49 participants (55% men), developed pancreatic cancer. Those eating a combination of the highest three quartiles of all of vitamins C and E and selenium had a decreased risk (HR=0.33, 95% CI 0.13 to 0.84, p<0.05). There were threshold effects (Q2-4 vs Q1) for selenium (HR=0.49, 95% CI 0.26 to 0.93, p<0.05) and vitamin E (HR=0.57, 95% CI 0.29 to 1.09, p<0.10). The HRs of quartiles for antioxidants, apart from zinc, were <1, but not statistically significant. For vitamin C, there was an inverse association with serum measurements (HR trend=0.67, 95% CI 0.49 to 0.91, p=0.01), but the threshold effect from diaries was not significant (HR=0.68, 95% CI 0.37 to 1.26). CONCLUSION: The results support measuring antioxidants in studies investigating the aetiology of pancreatic cancer. If the association is causal, 1 in 12 cancers might be prevented by avoiding the lowest intakes.

5 Article Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. 2013

Rohrmann, Sabine / Linseisen, Jakob / Nöthlings, Ute / Overvad, Kim / Egeberg, Rikke / Tjønneland, Anne / Boutron-Ruault, Marie Christine / Clavel-Chapelon, Françoise / Cottet, Vanessa / Pala, Valeria / Tumino, Rosario / Palli, Domenico / Panico, Salvatore / Vineis, Paolo / Boeing, Heiner / Pischon, Tobias / Grote, Verena / Teucher, Birigit / Khaw, Kay-Tee / Wareham, Nicholas J / Crowe, Francesca L / Goufa, Ioulia / Orfanos, Philippos / Trichopoulou, Antonia / Jeurnink, Suzanne M / Siersema, Peter D / Peeters, Petra H M / Brustad, Magritt / Engeset, Dagrun / Skeie, Guri / Duell, Eric J / Amiano, Pilar / Barricarte, Aurelio / Molina-Montes, Esther / Rodríguez, Laudina / Tormo, María-José / Sund, Malin / Ye, Weimin / Lindkvist, Björn / Johansen, Dorthe / Ferrari, Pietro / Jenab, Mazda / Slimani, Nadia / Ward, Heather / Riboli, Elio / Norat, Teresa / Bueno-de-Mesquita, H Bas. ·Division of Cancer Epidemiology and Prevention, Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland. sabine.rohrmann@ifspm.uzh.ch ·Int J Cancer · Pubmed #22610753.

ABSTRACT: Pancreatic cancer is the fourth most common cause of cancer death worldwide with large geographical variation, which implies the contribution of diet and lifestyle in its etiology. We examined the association of meat and fish consumption with risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). A total of 477,202 EPIC participants from 10 European countries recruited between 1992 and 2000 were included in our analysis. Until 2008, 865 nonendocrine pancreatic cancer cases have been observed. Calibrated relative risks (RRs) and 95% confidence intervals (CIs) were computed using multivariable-adjusted Cox hazard regression models. The consumption of red meat (RR per 50 g increase per day = 1.03, 95% CI = 0.93-1.14) and processed meat (RR per 50 g increase per day = 0.93, 95% CI = 0.71-1.23) were not associated with an increased pancreatic cancer risk. Poultry consumption tended to be associated with an increased pancreatic cancer risk (RR per 50 g increase per day = 1.72, 95% CI = 1.04-2.84); however, there was no association with fish consumption (RR per 50 g increase per day = 1.22, 95% CI = 0.92-1.62). Our results do not support the conclusion of the World Cancer Research Fund that red or processed meat consumption may possibly increase the risk of pancreatic cancer. The positive association of poultry consumption with pancreatic cancer might be a chance finding as it contradicts most previous findings.

6 Article Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2012

Molina-Montes, Esther / Wark, Petra A / Sánchez, María-José / Norat, Teresa / Jakszyn, Paula / Luján-Barroso, Leila / Michaud, Dominique S / Crowe, Francesca / Allen, Naomi / Khaw, Kay-Tee / Wareham, Nicholas / Trichopoulou, Antonia / Adarakis, George / Katarachia, Helen / Skeie, Guri / Henningsen, Maria / Broderstad, Ann Ragnhild / Berrino, Franco / Tumino, Rosario / Palli, Domenico / Mattiello, Amalia / Vineis, Paolo / Amiano, Pilar / Barricarte, Aurelio / Huerta, José-María / Duell, Eric J / Quirós, José-Ramón / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Overvad, Kim / Tjønneland, Anne / Roswall, Nina / Li, Kuanrong / Grote, Verena A / Steffen, Annika / Boeing, Heiner / Racine, Antoine / Boutron-Ruault, Marie-Christine / Carbonnel, Franck / Peeters, Petra H M / Siersema, Peter D / Fedirko, Veronika / Jenab, Mazda / Riboli, Elio / Bueno-de-Mesquita, Bas. ·Andalusian School of Public Health. Granada Cancer Registry, Spain. ·Int J Cancer · Pubmed #22438075.

ABSTRACT: Several studies support a protective effect of dietary magnesium against type 2 diabetes, but a harmful effect for iron. As diabetes has been linked to pancreatic cancer, intake of these nutrients may be also associated with this cancer. We examined the association between dietary intake of magnesium, total iron and heme-iron and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. In total, 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After an average follow-up of 11.3 years, 396 men and 469 women developed exocrine pancreatic cancer. Hazard ratios and 95% confidence intervals (CIs) were obtained using Cox regression stratified by age and center, and adjusted for energy intake, smoking status, height, weight, and self-reported diabetes status. Neither intake of magnesium, total iron nor heme-iron was associated with pancreatic cancer risk. In stratified analyses, a borderline inverse association was observed among overweight men (body mass index, ≥ 25 kg/m(2) ) with magnesium (HR(per 100 mg/day increase) = 0.79, 95% CI = 0.63-1.01) although this was less apparent using calibrated intake. In female smokers, a higher intake of heme-iron was associated with a higher pancreatic cancer risk (HR (per 1 mg/day increase) = 1.38, 95% CI = 1.10-1.74). After calibration, this risk increased significantly to 2.5-fold (95% CI = 1.22-5.28). Overall, dietary magnesium, total iron and heme-iron were not associated with pancreatic cancer risk during the follow-up period. Our observation that heme-iron was associated with increased pancreatic cancer risk in female smokers warrants replication in additional study populations.

7 Article Plasma cotinine levels and pancreatic cancer in the EPIC cohort study. 2012

Leenders, Max / Chuang, Shu-Chun / Dahm, Christina C / Overvad, Kim / Ueland, Per Magne / Midttun, Oivind / Vollset, Stein Emil / Tjønneland, Anne / Halkjaer, Jytte / Jenab, Mazda / Clavel-Chapelon, Françoise / Boutron-Ruault, Marie-Christine / Kaaks, Rudolf / Canzian, Federico / Boeing, Heiner / Weikert, Cornelia / Trichopoulou, Antonia / Bamia, Christina / Naska, Androniki / Palli, Domenico / Pala, Valeria / Mattiello, Amalia / Tumino, Rosario / Sacerdote, Carlotta / van Duijnhoven, Fränzel J B / Peeters, Petra H M / van Gils, Carla H / Lund, Eiliv / Rodriguez, Laudina / Duell, Eric J / Pérez, María-José Sánchez / Molina-Montes, Esther / Castaño, José María Huerta / Barricarte, Aurelio / Larrañaga, Nerea / Johansen, Dorthe / Lindkvist, Björn / Sund, Malin / Ye, Weimin / Khaw, Kay-Tee / Wareham, Nicholas J / Michaud, Dominique S / Riboli, Elio / Xun, Wei W / Allen, Naomi E / Crowe, Francesca L / Bueno-de-Mesquita, H Bas / Vineis, Paolo. ·School of Public Health, Imperial College London, London, UK. m.leenders-6@umcutrecht.nl ·Int J Cancer · Pubmed #21953524.

ABSTRACT: Smoking is an established risk factor for pancreatic cancer, previously investigated by the means of questionnaires. Using cotinine as a biomarker for tobacco exposure allows more accurate quantitative analyses to be performed. This study on pancreatic cancer, nested within the European Prospective Investigation into Cancer and Nutrition (EPIC cohort), included 146 cases and 146 matched controls. Using liquid chromatography-mass spectrometry, plasma cotinine levels were analyzed on average 8.0 years before cancer onset (5-95% range: 2.8-12.0 years). The relation between plasma cotinine levels and pancreatic cancer was analyzed with conditional logistic regression for different levels of cotinine in a population of never and current smokers. This was also done for the self-reported number of smoked cigarettes per day at baseline. Every increase of 350 nmol/L of plasma cotinine was found to significantly elevate risk of pancreatic cancer [odds ratio (OR): 1.33, 95% confidence interval (CI): 1.11-1.60]. People with a cotinine level over 1187.8 nmol/L, a level comparable to smoking 17 cigarettes per day, have an elevated risk of pancreatic cancer, compared to people with cotinine levels below 55 nmol/L (OR: 3.66, 95% CI: 1.44-9.26). The results for self-reported smoking at baseline also show an increased risk of pancreatic cancer from cigarette smoking based on questionnaire information. People who smoke more than 30 cigarettes per day showed the highest risk compared to never smokers (OR: 4.15, 95% CI: 1.02-16.42). This study is the first to show that plasma cotinine levels are strongly related to pancreatic cancer.

8 Article A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. 2011

Chuang, Shu-Chun / Stolzenberg-Solomon, Rachael / Ueland, Per Magne / Vollset, Stein Emil / Midttun, Øivind / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Boutron-Ruault, Marie-Christine / Morois, Sophie / Clavel-Chapelon, Françoise / Teucher, Birgit / Kaaks, Rudolf / Weikert, Cornelia / Boeing, Heiner / Trichopoulou, Antonia / Benetou, Vassiliki / Naska, Androniki / Jenab, Mazda / Slimani, Nadia / Romieu, Isabelle / Michaud, Dominique S / Palli, Domenico / Sieri, Sabina / Panico, Salvatore / Sacerdote, Carlotta / Tumino, Rosario / Skeie, Guri / Duell, Eric J / Rodriguez, Laudina / Molina-Montes, Esther / Huerta, José Marı A / Larrañaga, Nerea / Gurrea, Aurelio Barricarte / Johansen, Dorthe / Manjer, Jonas / Ye, Weimin / Sund, Malin / Peeters, Petra H M / Jeurnink, Suzanne / Wareham, Nicholas / Khaw, Kay-Tee / Crowe, Francesca / Riboli, Elio / Bueno-de-Mesquita, Bas / Vineis, Paolo. ·School of Public Health, Imperial College London, London, UK. ·Eur J Cancer · Pubmed #21411310.

ABSTRACT: Folate intake has shown an inverse association with pancreatic cancer; nevertheless, results from plasma measurements were inconsistent. The aim of this study is to examine the association between plasma total homocysteine, methionine, folate, cobalamin, pyridoxal 5'-phosphate, riboflavin, flavin mononucleotide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). We conducted a nested case-control study in the EPIC cohort, which has an average of 9.6 years of follow-up (1992-2006), using 463 incident pancreatic cancer cases. Controls were matched to each case by center, sex, age (± 1 year), date (± 1 year) and time (± 3 h) at blood collection and fasting status. Conditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence intervals (CI), adjusting for education, smoking status, plasma cotinine concentration, alcohol drinking, body mass index and diabetes status. We observed a U-shaped association between plasma folate and pancreatic cancer risk. The ORs for plasma folate ≤ 5, 5-10, 10-15 (reference), 15-20, and > 20 nmol/L were 1.58 (95% CI=0.72-3.46), 1.39 (0.93-2.08), 1.0 (reference), 0.79 (0.52-1.21), and 1.34 (0.89-2.02), respectively. Methionine was associated with an increased risk in men (per quintile increment: OR=1.17, 95% CI=1.00-1.38) but not in women (OR=0.91, 95% CI=0.78-1.07; p for heterogeneity <0.01). Our results suggest a U-shaped association between plasma folate and pancreatic cancer risk in both men and women. The positive association that we observed between methionine and pancreatic cancer may be sex dependent and may differ by time of follow-up. However, the mechanisms behind the observed associations warrant further investigation.