Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Yuxuan Wang
Based on 3 articles published since 2010
(Why 3 articles?)
||||

Between 2010 and 2020, Yuxuan Wang wrote the following 3 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. 2017

Cohen, Joshua D / Javed, Ammar A / Thoburn, Christopher / Wong, Fay / Tie, Jeanne / Gibbs, Peter / Schmidt, C Max / Yip-Schneider, Michele T / Allen, Peter J / Schattner, Mark / Brand, Randall E / Singhi, Aatur D / Petersen, Gloria M / Hong, Seung-Mo / Kim, Song Cheol / Falconi, Massimo / Doglioni, Claudio / Weiss, Matthew J / Ahuja, Nita / He, Jin / Makary, Martin A / Maitra, Anirban / Hanash, Samir M / Dal Molin, Marco / Wang, Yuxuan / Li, Lu / Ptak, Janine / Dobbyn, Lisa / Schaefer, Joy / Silliman, Natalie / Popoli, Maria / Goggins, Michael G / Hruban, Ralph H / Wolfgang, Christopher L / Klein, Alison P / Tomasetti, Cristian / Papadopoulos, Nickolas / Kinzler, Kenneth W / Vogelstein, Bert / Lennon, Anne Marie. ·The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3021, Australia. · Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia. · Department of Medical Oncology, Western Health, Melbourne, VIC 3021, Australia. · Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202. · Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202. · Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065. · Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065. · Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260. · Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260. · Department of Epidemiology, Mayo Clinic, Rochester, MN 55902. · Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea. · Department of Hepatobiliary and Pancreas Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea. · Division of Pancreatic Surgery, Department of Surgery, San Raffaele Scientific Institute Research Hospital, 20132 Milan, Italy. · Department of Pathology, San Raffaele Scientific Institute Research Hospital, 20132 Milan, Italy. · The Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030. · Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205. · Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205. · Division of Biostatistics and Bioinformatics, Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287. · The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287; bertvog@gmail.com amlennon@jhmi.edu. · The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287; bertvog@gmail.com amlennon@jhmi.edu. ·Proc Natl Acad Sci U S A · Pubmed #28874546.

ABSTRACT: The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for

2 Article A novel approach for selecting combination clinical markers of pathology applied to a large retrospective cohort of surgically resected pancreatic cysts. 2017

Masica, David L / Dal Molin, Marco / Wolfgang, Christopher L / Tomita, Tyler / Ostovaneh, Mohammad R / Blackford, Amanda / Moran, Robert A / Law, Joanna K / Barkley, Thomas / Goggins, Michael / Irene Canto, Marcia / Pittman, Meredith / Eshleman, James R / Ali, Syed Z / Fishman, Elliot K / Kamel, Ihab R / Raman, Siva P / Zaheer, Atif / Ahuja, Nita / Makary, Martin A / Weiss, Matthew J / Hirose, Kenzo / Cameron, John L / Rezaee, Neda / He, Jin / Joon Ahn, Young / Wu, Wenchuan / Wang, Yuxuan / Springer, Simeon / Diaz, Luis L / Papadopoulos, Nickolas / Hruban, Ralph H / Kinzler, Kenneth W / Vogelstein, Bert / Karchin, Rachel / Lennon, Anne Marie. ·*Drs Masica and Dal Molin contributed equally as first authors. · Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland. · Departments of the Sol Goldman Pancreatic Cancer Research Center. · Departments of Pathology. · Departments of Surgery. · Departments of Oncology. · Departments of Medicine. · Departments of Biostatistics and Bioinformatics. · Departments of the Ludwig Center and Howard Hughes Medical Institute at the Sidney Kimmel Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, Maryland. · Departments of Radiology. · †Drs Lennon and Karchin contributed equally as senior authors amlennon@jhmi.edu karchin@jhu.edu. ·J Am Med Inform Assoc · Pubmed #27330075.

ABSTRACT: OBJECTIVE: Our objective was to develop an approach for selecting combinatorial markers of pathology from diverse clinical data types. We demonstrate this approach on the problem of pancreatic cyst classification. MATERIALS AND METHODS: We analyzed 1026 patients with surgically resected pancreatic cysts, comprising 584 intraductal papillary mucinous neoplasms, 332 serous cystadenomas, 78 mucinous cystic neoplasms, and 42 solid-pseudopapillary neoplasms. To derive optimal markers for cyst classification from the preoperative clinical and radiological data, we developed a statistical approach for combining any number of categorical, dichotomous, or continuous-valued clinical parameters into individual predictors of pathology. The approach is unbiased and statistically rigorous. Millions of feature combinations were tested using 10-fold cross-validation, and the most informative features were validated in an independent cohort of 130 patients with surgically resected pancreatic cysts. RESULTS: We identified combinatorial clinical markers that classified serous cystadenomas with 95% sensitivity and 83% specificity; solid-pseudopapillary neoplasms with 89% sensitivity and 86% specificity; mucinous cystic neoplasms with 91% sensitivity and 83% specificity; and intraductal papillary mucinous neoplasms with 94% sensitivity and 90% specificity. No individual features were as accurate as the combination markers. We further validated these combinatorial markers on an independent cohort of 130 pancreatic cysts, and achieved high and well-balanced accuracies. Overall sensitivity and specificity for identifying patients requiring surgical resection was 84% and 81%, respectively. CONCLUSIONS: Our approach identified combinatorial markers for pancreatic cyst classification that had improved performance relative to the individual features they comprise. In principle, this approach can be applied to any clinical dataset comprising dichotomous, categorical, and continuous-valued parameters.

3 Article Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. 2016

Roberts, Nicholas J / Norris, Alexis L / Petersen, Gloria M / Bondy, Melissa L / Brand, Randall / Gallinger, Steven / Kurtz, Robert C / Olson, Sara H / Rustgi, Anil K / Schwartz, Ann G / Stoffel, Elena / Syngal, Sapna / Zogopoulos, George / Ali, Syed Z / Axilbund, Jennifer / Chaffee, Kari G / Chen, Yun-Ching / Cote, Michele L / Childs, Erica J / Douville, Christopher / Goes, Fernando S / Herman, Joseph M / Iacobuzio-Donahue, Christine / Kramer, Melissa / Makohon-Moore, Alvin / McCombie, Richard W / McMahon, K Wyatt / Niknafs, Noushin / Parla, Jennifer / Pirooznia, Mehdi / Potash, James B / Rhim, Andrew D / Smith, Alyssa L / Wang, Yuxuan / Wolfgang, Christopher L / Wood, Laura D / Zandi, Peter P / Goggins, Michael / Karchin, Rachel / Eshleman, James R / Papadopoulos, Nickolas / Kinzler, Kenneth W / Vogelstein, Bert / Hruban, Ralph H / Klein, Alison P. ·Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas. · Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. · Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York. · Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. · Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan. · Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. · Population Sciences Division, Dana-Farber Cancer Institute, and Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts. · The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada. Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada. · Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland. · Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. · Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Memorial Sloan Kettering Cancer Center, New York, New York. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. · Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. inGenious Targeting Laboratory, Ronkonkoma, New York. · Department of Psychiatry, University of Iowa, Iowa City, Iowa. · Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Michigan, Ann Arbor, Michigan. · Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. ·Cancer Discov · Pubmed #26658419.

ABSTRACT: SIGNIFICANCE: The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.