Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Yogesh Kumar Vashist
Based on 28 articles published since 2009
(Why 28 articles?)
||||

Between 2009 and 2019, Y. Vashist wrote the following 28 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
Pages: 1 · 2
1 Guideline Extended pancreatectomy in pancreatic ductal adenocarcinoma: definition and consensus of the International Study Group for Pancreatic Surgery (ISGPS). 2014

Hartwig, Werner / Vollmer, Charles M / Fingerhut, Abe / Yeo, Charles J / Neoptolemos, John P / Adham, Mustapha / Andrén-Sandberg, Ake / Asbun, Horacio J / Bassi, Claudio / Bockhorn, Max / Charnley, Richard / Conlon, Kevin C / Dervenis, Christos / Fernandez-Cruz, Laureano / Friess, Helmut / Gouma, Dirk J / Imrie, Clem W / Lillemoe, Keith D / Milićević, Miroslav N / Montorsi, Marco / Shrikhande, Shailesh V / Vashist, Yogesh K / Izbicki, Jakob R / Büchler, Markus W / Anonymous1520795. ·Department of Surgery, Klinikum Großhadern, University of Munich, Munich, Germany. · Department of Gastrointestinal Surgery, Penn Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA. · Department of Digestive Surgery, Centre Hospitalier Intercommunal, Poissy, France. · Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA. · Department of Molecular and Clinical Cancer Medicine, Liverpool Cancer Research-UK Centre, University of Liverpool, Liverpool, UK. · Department of HPB Surgery, Hopital Edouard Herriot, Lyon, France. · Department of Surgery, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden. · Department of General Surgery, Mayo Clinic, Jacksonville, FL. · Department of Surgery and Oncology, Pancreas Institute, University of Verona, Verona, Italy. · Department of General-, Visceral- and Thoracic-Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany. · Department of HPB & Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK. · Professorial Surgical Unit, University of Dublin, Trinity College, Dublin, Ireland. · Department of First Surgery, Agia Olga Hospital, Athens, Greece. · Department of Surgery, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain. · Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. · Department of Surgery, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. · Academic Unit of Surgery, University of Glasgow, Glasgow, UK. · Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA. · First Surgical Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia. · Department of General Surgery, Instituto Clinico Humanitas IRCCS, University of Milan, Milan, Italy. · Department of Gastrointestinal and HPB Surgical Oncology, Tata Memorial Hospital, Mumbai, India. · Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany. Electronic address: markus.buechler@med.uni-heidelberg.de. ·Surgery · Pubmed #24856668.

ABSTRACT: BACKGROUND: Complete macroscopic tumor resection is one of the most relevant predictors of long-term survival in pancreatic ductal adenocarcinoma. Because locally advanced pancreatic tumors can involve adjacent organs, "extended" pancreatectomy that includes the resection of additional organs may be needed to achieve this goal. Our aim was to develop a common consistent terminology to be used in centers reporting results of pancreatic resections for cancer. METHODS: An international panel of pancreatic surgeons working in well-known, high-volume centers reviewed the literature on extended pancreatectomies and worked together to establish a consensus on the definition and the role of extended pancreatectomy in pancreatic cancer. RESULTS: Macroscopic (R1) and microscopic (R0) complete tumor resection can be achieved in patients with locally advanced disease by extended pancreatectomy. Operative time, blood loss, need for blood transfusions, duration of stay in the intensive care unit, and hospital morbidity, and possibly also perioperative mortality are increased with extended resections. Long-term survival is similar compared with standard resections but appears to be better compared with bypass surgery or nonsurgical palliative chemotherapy or chemoradiotherapy. It was not possible to identify any clear prognostic criteria based on the specific additional organ resected. CONCLUSION: Despite increased perioperative morbidity, extended pancreatectomy is warranted in locally advanced disease to achieve long-term survival in pancreatic ductal adenocarcinoma if macroscopic clearance can be achieved. Definitions of extended pancreatectomies for locally advanced disease (and not distant metastatic disease) are established that are crucial for comparison of results of future trials across different practices and countries, in particular for those using neoadjuvant therapy.

2 Guideline Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). 2014

Bockhorn, Maximilian / Uzunoglu, Faik G / Adham, Mustapha / Imrie, Clem / Milicevic, Miroslav / Sandberg, Aken A / Asbun, Horacio J / Bassi, Claudio / Büchler, Markus / Charnley, Richard M / Conlon, Kevin / Cruz, Laureano Fernandez / Dervenis, Christos / Fingerhutt, Abe / Friess, Helmut / Gouma, Dirk J / Hartwig, Werner / Lillemoe, Keith D / Montorsi, Marco / Neoptolemos, John P / Shrikhande, Shailesh V / Takaori, Kyoichi / Traverso, William / Vashist, Yogesh K / Vollmer, Charles / Yeo, Charles J / Izbicki, Jakob R / Anonymous1510795. ·Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany. · Department of HPB Surgery, Hôpital Edouard Herriot, Lyon, France. · Academic Unit of Surgery, University of Glasgow, Glasgow, UK. · First Surgical Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia. · Department of Surgery, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden. · Department of General Surgery, Mayo Clinic, Jacksonville, FL. · Department of Surgery and Oncology, Pancreas Institute, University of Verona, Verona, Italy. · Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany. · Department of HPB & Transplant Surgery, Freeman Hospital, Newcastle upon Tyne, UK. · Professorial Surgical Unit, University of Dublin, Trinity College, Dublin, Ireland. · Department of Surgery, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain. · First Department of Surgery, Agia Olga Hospital, Athens, Greece. · Department of Digestive Surgery, Centre Hospitalier Intercommunal, Poissy, France. · Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany. · Department of Surgery, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. · Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA. · Department of General Surgery, Instituto Clinico Humanitas IRCCS, University of Milan, Milan, Italy. · Department of Molecular and Clinical Cancer Medicine, Liverpool Cancer Research-UK Centre, University of Liverpool, Liverpool, UK. · Department of Gastrointestinal and HPB Surgical Oncology, Tata Memorial Centre, Mumbai, India. · Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan. · St. Luke's Clinic - Center For Pancreatic and Liver Diseases, Boise, ID. · Department of Gastrointestinal Surgery, Penn Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA. · Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA. · Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany. Electronic address: izbicki@uke.de. ·Surgery · Pubmed #24856119.

ABSTRACT: BACKGROUND: This position statement was developed to expedite a consensus on definition and treatment for borderline resectable pancreatic ductal adenocarcinoma (BRPC) that would have worldwide acceptability. METHODS: An international panel of pancreatic surgeons from well-established, high-volume centers collaborated on a literature review and development of consensus on issues related to borderline resectable pancreatic cancer. RESULTS: The International Study Group of Pancreatic Surgery (ISGPS) supports the National Comprehensive Cancer Network criteria for the definition of BRPC. Current evidence supports operative exploration and resection in the case of involvement of the mesentericoportal venous axis; in addition, a new classification of extrahepatic mesentericoportal venous resections is proposed by the ISGPS. Suspicion of arterial involvement should lead to exploration to confirm the imaging-based findings. Formal arterial resections are not recommended; however, in exceptional circumstances, individual therapeutic approaches may be evaluated under experimental protocols. The ISGPS endorses the recommendations for specimen examination and the definition of an R1 resection (tumor within 1 mm from the margin) used by the British Royal College of Pathologists. Standard preoperative diagnostics for BRPC may include: (1) serum levels of CA19-9, because CA19-9 levels predict survival in large retrospective series; and also (2) the modified Glasgow Prognostic Score and the neutrophil/lymphocyte ratio because of the prognostic relevance of the systemic inflammatory response. Various regimens of neoadjuvant therapy are recommended only in the setting of prospective trials at high-volume centers. CONCLUSION: Current evidence justifies portomesenteric venous resection in patients with BRPC. Basic definitions were identified, that are currently lacking but that are needed to obtain further evidence and improvement for this important patient subgroup. A consensus for each topic is given.

3 Guideline [S3-guideline exocrine pancreatic cancer]. 2013

Seufferlein, T / Porzner, M / Becker, T / Budach, V / Ceyhan, G / Esposito, I / Fietkau, R / Follmann, M / Friess, H / Galle, P / Geissler, M / Glanemann, M / Gress, T / Heinemann, V / Hohenberger, W / Hopt, U / Izbicki, J / Klar, E / Kleeff, J / Kopp, I / Kullmann, F / Langer, T / Langrehr, J / Lerch, M / Löhr, M / Lüttges, J / Lutz, M / Mayerle, J / Michl, P / Möller, P / Molls, M / Münter, M / Nothacker, M / Oettle, H / Post, S / Reinacher-Schick, A / Röcken, C / Roeb, E / Saeger, H / Schmid, R / Schmiegel, W / Schoenberg, M / Siveke, J / Stuschke, M / Tannapfel, A / Uhl, W / Unverzagt, S / van Oorschot, B / Vashist, Y / Werner, J / Yekebas, E / Anonymous230779 / Anonymous240779 / Anonymous250779. ·Klinik für Innere Medizin I, Universitätsklinikum Ulm. · Klinik für Allgemeine Chirurgie, Viszeral-, Thorax-, Transplantations- und Kinderchirurgie, Universitätsklinikum Kiel. · Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin. · Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, TU München. · Institut für Allgemeine Pathologie, Klinikum rechts der Isar, TU München. · Strahlenklinik, Universitätsklinikum Erlangen. · Leitlinienprogramm Onkologie, Deutsche Krebsgesellschaft e. V., Berlin. · I. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz. · Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen. · Klinik für Allgemeine Chirurgie, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum des Saarlandes Homburg/Saar. · Klinik für Gastroenterologie, Endokrinologie und Stoffwechsel, Universitätsklinikum Gießen und Marburg. · Medizinischen Klinik und Poliklinik III, Klinikum der Universität München LMU. · Chirurgische Klinik, Universitätsklinikum Erlangen. · Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Freiburg. · Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf. · Klinik für Allgemeine Chirurgie, Thorax-, Gefäß- und Transplantationschirurgie, Universitätsmedizin Rostock. · AWMF-Institut für Medizinisches Wissensmanagement, Marburg. · Medizinische Klinik I, Klinikum Weiden. · Klinik für Allgemein-, Gefäß- und Viszeralchirurgie, Martin-Luther-Krankenhaus Berlin. · Klinik und Poliklinik für Innere Medizin A, Universitätsmedizin Greifswald. · Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm. · Institut für Pathologie, Marienkrankenhaus Hamburg. · Medizinische Klinik - Schwerpunkt Gastroenterologie, Endokrinologie, Infektiologie, Caritasklinikum Saarbrücken. · Institut für Pathologie, Universitätsklinikum Ulm. · Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, TU München. · Klinik für Strahlentherapie und Radioonkologie, Klinikum Stuttgart. · AWMF-Institut für Medizinisches Wissensmanagement, Berlin. · Medizinische Klinik mit Schwerpunkt Hämatologie und Onkologie, Charité Universitätsmedizin Berlin. · Chirurgische Klinik, Universitätsmedizin Mannheim. · Abt. für Hämatologie und Onkologie, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum. · Institut für Pathologie, Universitätsklinikum Kiel. · Medizinische Klinik II, SP Gastroenterologie, Universitätsklinikum Gießen und Marburg. · Klinik für Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Dresden. · II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, TU München. · Medizinische Klinik, Klinikum der Ruhr-Universität Bochum. · Klinik für Chirurgie, Rotkreuzklinikum München. · Klinik für Strahlentherapie, Universitätsklinikum Essen. · Institut für Pathologie, Ruhr-Universität Bochum. · Chirurgische Klinik, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum. · Institut für Medizinische Epidemiologie, Biometrie und Informatik, Martin-Luther-Universität Halle-Wittenberg. · Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Würzburg. · Klinik für Allgemeine, Viszerale und Transplantationschirurgie, Universitätsklinikum Heidelberg. · Klinik für Allgemein-, Thorax- und Viszeralchirurgie, Klinikum Darmstadt. ·Z Gastroenterol · Pubmed #24338757.

ABSTRACT: -- No abstract --

4 Article Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. 2019

Campa, Daniele / Matarazzi, Martina / Greenhalf, William / Bijlsma, Maarten / Saum, Kai-Uwe / Pasquali, Claudio / van Laarhoven, Hanneke / Szentesi, Andrea / Federici, Francesca / Vodicka, Pavel / Funel, Niccola / Pezzilli, Raffaele / Bueno-de-Mesquita, H Bas / Vodickova, Ludmila / Basso, Daniela / Obazee, Ofure / Hackert, Thilo / Soucek, Pavel / Cuk, Katarina / Kaiser, Jörg / Sperti, Cosimo / Lovecek, Martin / Capurso, Gabriele / Mohelnikova-Duchonova, Beatrice / Khaw, Kay-Tee / König, Anna-Katharina / Kupcinskas, Juozas / Kaaks, Rudolf / Bambi, Franco / Archibugi, Livia / Mambrini, Andrea / Cavestro, Giulia Martina / Landi, Stefano / Hegyi, Péter / Izbicki, Jakob R / Gioffreda, Domenica / Zambon, Carlo Federico / Tavano, Francesca / Talar-Wojnarowska, Renata / Jamroziak, Krzysztof / Key, Timothy J / Fave, Gianfranco Delle / Strobel, Oliver / Jonaitis, Laimas / Andriulli, Angelo / Lawlor, Rita T / Pirozzi, Felice / Katzke, Verena / Valsuani, Chiara / Vashist, Yogesh K / Brenner, Hermann / Canzian, Federico. ·Department of Biology, University of Pisa, Pisa, Italy. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Medical Oncology, Academic Medical Centre, Amsterdam, The Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Pancreatic and Digestive Endocrine Surgery - Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy. · Institute for Translational Medicine, University of Pécs, Pécs, Hungary. · First Department of Medicine, University of Szeged, Szeged, Hungary. · Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of Czech Republic, Prague, Czech Republic. · Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic. · Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. · Department of Surgery, Unit of Experimental Surgical Pathology, University of Pisa, Pisa, Italy. · Pancreas Unit, Department of Digestive System, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Laboratory Medicine, University-Hospital of Padova, Padua, Italy. · Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Third Surgical Clinic - Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy. · Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic. · Digestive and Liver Disease Unit, S. Andrea Hospital, 'Sapienza' University, Rome, Italy. · PancreatoBiliary Endoscopy and EUS Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy. · Department of Oncology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. · University of Cambridge School of Clinical Medicine Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge, United Kingdom. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Florence, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy. · MTA-SZTE Momentum Translational Gastroenterology Research Group, Szeged, Hungary. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Division of Gastroenterology and Molecular Biology Lab, IRCCS Ospedale Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy. · Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland. · Institute of Hematology and Transfusion Medicine, Warsaw, Poland. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · ARC-NET, University and Hospital Trust of Verona, Verona, Italy. · Division of Abdominal Surgery, IRCCS Ospedale Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy. · Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. ·Int J Cancer · Pubmed #30325019.

ABSTRACT: Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-rs10936599) alone and combined in a LTL genetic score ("teloscore", which explains 2.2% of the telomere variability) in relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35-1.76; p = 1.54 × 10

5 Article Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. 2018

Klein, Alison P / Wolpin, Brian M / Risch, Harvey A / Stolzenberg-Solomon, Rachael Z / Mocci, Evelina / Zhang, Mingfeng / Canzian, Federico / Childs, Erica J / Hoskins, Jason W / Jermusyk, Ashley / Zhong, Jun / Chen, Fei / Albanes, Demetrius / Andreotti, Gabriella / Arslan, Alan A / Babic, Ana / Bamlet, William R / Beane-Freeman, Laura / Berndt, Sonja I / Blackford, Amanda / Borges, Michael / Borgida, Ayelet / Bracci, Paige M / Brais, Lauren / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, Bas / Buring, Julie / Campa, Daniele / Capurso, Gabriele / Cavestro, Giulia Martina / Chaffee, Kari G / Chung, Charles C / Cleary, Sean / Cotterchio, Michelle / Dijk, Frederike / Duell, Eric J / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gallinger, Steven / M Gaziano, J Michael / Gazouli, Maria / Giles, Graham G / Giovannucci, Edward / Goggins, Michael / Goodman, Gary E / Goodman, Phyllis J / Hackert, Thilo / Haiman, Christopher / Hartge, Patricia / Hasan, Manal / Hegyi, Peter / Helzlsouer, Kathy J / Herman, Joseph / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert / Hung, Rayjean J / Jacobs, Eric J / Jamroziak, Krzysztof / Janout, Vladimir / Kaaks, Rudolf / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Kooperberg, Charles / Kulke, Matthew H / Kupcinskas, Juozas / Kurtz, Robert J / Laheru, Daniel / Landi, Stefano / Lawlor, Rita T / Lee, I-Min / LeMarchand, Loic / Lu, Lingeng / Malats, Núria / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Mohelníková-Duchoňová, Beatrice / Neale, Rachel E / Neoptolemos, John P / Oberg, Ann L / Olson, Sara H / Orlow, Irene / Pasquali, Claudio / Patel, Alpa V / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Real, Francisco X / Rothman, Nathaniel / Scelo, Ghislaine / Sesso, Howard D / Severi, Gianluca / Shu, Xiao-Ou / Silverman, Debra / Smith, Jill P / Soucek, Pavel / Sund, Malin / Talar-Wojnarowska, Renata / Tavano, Francesca / Thornquist, Mark D / Tobias, Geoffrey S / Van Den Eeden, Stephen K / Vashist, Yogesh / Visvanathan, Kala / Vodicka, Pavel / Wactawski-Wende, Jean / Wang, Zhaoming / Wentzensen, Nicolas / White, Emily / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Zheng, Wei / Kraft, Peter / Li, Donghui / Chanock, Stephen / Obazee, Ofure / Petersen, Gloria M / Amundadottir, Laufey T. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. aklein1@jhmi.edu. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA. · Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA. · International Agency for Research on Cancer (IARC), 69372, Lyon, France. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. · Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA. · Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. · Department of Biology, University of Pisa, 56126, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA. · Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada. · Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic. · Yale Cancer Center, New Haven, CT, 06510, USA. · Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy. · Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA. · Boston VA Healthcare System, Boston, MA, 02132, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany. · Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA. · Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA. · First Department of Medicine, University of Szeged, 6725, Szeged, Hungary. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic. · Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA. · Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland. · Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic. · Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. · ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain. · CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain. · Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain. · Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy. · Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain. · CIBERONC, 28029, Madrid, Spain. · Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy. · Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland. · Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic. · Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia. · Department of General Surgery, University of Heidelburg, Heidelberg, Germany. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain. · Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. · Department of Medicine, Georgetown University, Washington, 20057, USA. · Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic. · Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, 90-647, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy. · Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic. · Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA. · Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. amundadottirl@mail.nih.gov. ·Nat Commun · Pubmed #29422604.

ABSTRACT: In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10

6 Article Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. 2018

Campa, Daniele / Pastore, Manuela / Capurso, Gabriele / Hackert, Thilo / Di Leo, Milena / Izbicki, Jakob R / Khaw, Kay-Tee / Gioffreda, Domenica / Kupcinskas, Juozas / Pasquali, Claudio / Macinga, Peter / Kaaks, Rudolf / Stigliano, Serena / Peeters, Petra H / Key, Timothy J / Talar-Wojnarowska, Renata / Vodicka, Pavel / Valente, Roberto / Vashist, Yogesh K / Salvia, Roberto / Papaconstantinou, Ioannis / Shimizu, Yasuhiro / Valsuani, Chiara / Zambon, Carlo Federico / Gazouli, Maria / Valantiene, Irena / Niesen, Willem / Mohelnikova-Duchonova, Beatrice / Hara, Kazuo / Soucek, Pavel / Malecka-Panas, Ewa / Bueno-de-Mesquita, H B As / Johnson, Theron / Brenner, Herman / Tavano, Francesca / Fogar, Paola / Ito, Hidemi / Sperti, Cosimo / Butterbach, Katja / Latiano, Anna / Andriulli, Angelo / Cavestro, Giulia Martina / Busch, Olivier R C / Dijk, Frederike / Greenhalf, William / Matsuo, Keitaro / Lombardo, Carlo / Strobel, Oliver / König, Anna-Katharina / Cuk, Katarina / Strothmann, Hendrik / Katzke, Verena / Cantore, Maurizio / Mambrini, Andrea / Oliverius, Martin / Pezzilli, Raffaele / Landi, Stefano / Canzian, Federico. ·Department of Biology, University of Pisa, Pisa, Italy. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Digestive and Liver Disease Unit, S. Andrea Hospital 'Sapienza' University of Rome, Rome, Italy. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Clinical Gerontology Unit, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Division of Gastroenterology and Research Laboratory, Department of Surgery, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy. · Institute of Experimental Medicine, Czech Academy of Sciences and Institute of Clinical and Experimental Medicine, Prague, Czech Republic. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland. · Department of Visceral Surgery, Kantonsspital Aarau AG, Aarau, Switzerland. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy. · Second Department of Surgery, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan. · Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Massa and Carrara, Italy. · Department of Medicine (DIMED), University of Padova, Padova, Italy. · Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic. · Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan. · Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment, Bilthoven, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, St Mary's Campus, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Division of Clinical Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy. · Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan. · Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan. · Department of Surgery, Academic Medical Centre, Amsterdam, the Netherlands. · Department of Pathology, Academic Medical Centre, Amsterdam, the Netherlands. · Institute for Health Research, Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Division of General and Transplant Surgery, University of Pisa, Pisa, Italy. · Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, University of Pisa, Pisa, Italy. · Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine Sant'Orsola-Malpighi Hospital, Bologna, Italy. ·Int J Cancer · Pubmed #28913878.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a five-year survival of less than 6%. Chronic pancreatitis (CP), an inflammatory process in of the pancreas, is a strong risk factor for PDAC. Several genetic polymorphisms have been discovered as susceptibility loci for both CP and PDAC. Since CP and PDAC share a consistent number of epidemiologic risk factors, the aim of this study was to investigate whether specific CP risk loci also contribute to PDAC susceptibility. We selected five common SNPs (rs11988997, rs379742, rs10273639, rs2995271 and rs12688220) that were identified as susceptibility markers for CP and analyzed them in 2,914 PDAC cases, 356 CP cases and 5,596 controls retrospectively collected in the context of the international PANDoRA consortium. We found a weak association between the minor allele of the PRSS1-PRSS2-rs10273639 and an increased risk of developing PDAC (OR

7 Article HSP90 is a promising target in gemcitabine and 5-fluorouracil resistant pancreatic cancer. 2017

Ghadban, Tarik / Dibbern, Judith L / Reeh, Matthias / Miro, Jameel T / Tsui, Tung Y / Wellner, Ulrich / Izbicki, Jakob R / Güngör, Cenap / Vashist, Yogesh K. ·Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. · Department of Surgery, University Medical College Rostock, Schillingallee 35, 18057, Rostock, Germany. · Clinic for Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. vashist@uke.de. · Department of Visceral Surgery, Kantonsspital Aarau AG, Tellstrasse 25, 5001, Aarau, Switzerland. vashist@uke.de. ·Apoptosis · Pubmed #27878398.

ABSTRACT: Chemotherapy (CT) options in pancreatic cancer (PC) are limited to gemcitabine and 5-fluorouracil (5-FU). Several identified molecular targets in PC represent client proteins of HSP90. HSP90 is a promising target since it interferes with many oncogenic signaling pathways simultaneously. The aim of this study was to evaluate the efficacy of different HSP90 inhibitors in gemcitabine and 5-FU resistant PC. PC cell lines 5061, 5072 and 5156 were isolated and brought in to culture from patients being operated at our institution. L3.6pl cell line served as a control. Anti-proliferative efficacy of three different HSP90 inhibitors (17-AAG, 17-DMAG and 17-AEPGA) was evaluated by the MTT assay. Alterations in signaling pathway effectors and apoptosis upon HSP90 inhibition were determined by western blot analysis and annexin V/PI staining. The cell lines 5061, 5072 and 5156 were resistant to gemcitabine and 5-FU. In contrast 17-AAG and the water-soluble derivates 17-DMAG and 17-AEPGA displayed high anti-proliferative activity in all tested cell lines. The calculated IC

8 Article Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. 2016

Zhang, Mingfeng / Wang, Zhaoming / Obazee, Ofure / Jia, Jinping / Childs, Erica J / Hoskins, Jason / Figlioli, Gisella / Mocci, Evelina / Collins, Irene / Chung, Charles C / Hautman, Christopher / Arslan, Alan A / Beane-Freeman, Laura / Bracci, Paige M / Buring, Julie / Duell, Eric J / Gallinger, Steven / Giles, Graham G / Goodman, Gary E / Goodman, Phyllis J / Kamineni, Aruna / Kolonel, Laurence N / Kulke, Matthew H / Malats, Núria / Olson, Sara H / Sesso, Howard D / Visvanathan, Kala / White, Emily / Zheng, Wei / Abnet, Christian C / Albanes, Demetrius / Andreotti, Gabriella / Brais, Lauren / Bueno-de-Mesquita, H Bas / Basso, Daniela / Berndt, Sonja I / Boutron-Ruault, Marie-Christine / Bijlsma, Maarten F / Brenner, Hermann / Burdette, Laurie / Campa, Daniele / Caporaso, Neil E / Capurso, Gabriele / Cavestro, Giulia Martina / Cotterchio, Michelle / Costello, Eithne / Elena, Joanne / Boggi, Ugo / Gaziano, J Michael / Gazouli, Maria / Giovannucci, Edward L / Goggins, Michael / Gross, Myron / Haiman, Christopher A / Hassan, Manal / Helzlsouer, Kathy J / Hu, Nan / Hunter, David J / Iskierka-Jazdzewska, Elzbieta / Jenab, Mazda / Kaaks, Rudolf / Key, Timothy J / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Krogh, Vittorio / Kupcinskas, Juozas / Kurtz, Robert C / Landi, Maria T / Landi, Stefano / Le Marchand, Loic / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Neale, Rachel E / Oberg, Ann L / Panico, Salvatore / Patel, Alpa V / Peeters, Petra H M / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Purdue, Mark / Quiros, J Ramón / Riboli, Elio / Rothman, Nathaniel / Scarpa, Aldo / Scelo, Ghislaine / Shu, Xiao-Ou / Silverman, Debra T / Soucek, Pavel / Strobel, Oliver / Sund, Malin / Małecka-Panas, Ewa / Taylor, Philip R / Tavano, Francesca / Travis, Ruth C / Thornquist, Mark / Tjønneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Vashist, Yogesh / Vodicka, Pavel / Wactawski-Wende, Jean / Wentzensen, Nicolas / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Kooperberg, Charles / Risch, Harvey A / Jacobs, Eric J / Li, Donghui / Fuchs, Charles / Hoover, Robert / Hartge, Patricia / Chanock, Stephen J / Petersen, Gloria M / Stolzenberg-Solomon, Rachael S / Wolpin, Brian M / Kraft, Peter / Klein, Alison P / Canzian, Federico / Amundadottir, Laufey T. ·Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA. · New York University Cancer Institute, New York, New York, USA,. · Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA. · Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain. · Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. · Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. · Group Health Research Institute, Seattle, Washington, USA,. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. · Genetic and Molecular Epidemiology Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain. · Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. · Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. · Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. · Department of Epidemiology, University of Washington, Seattle, Washington, USA. · Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. · Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Laboratory Medicine, University Hospital of Padova, Padua, Italy,. · Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, F-94805, Villejuif, France. · University Paris Sud, UMRS 1018, F-94805, Villejuif, France. · IGR, F-94805, Villejuif, France. · Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Biology, University of Pisa, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy. · Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · Massachusetts Veteran's Epidemiology, Research, and Information Center, Geriatric Research Education and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA. · Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA. · Department of Pathology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Department of Medicine, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Department of Oncology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA. · Preventive Medicine, University of Southern California, Los Angeles, California, USA. · Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. · Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Harvard School of Public Health, Boston, Massachusetts, USA. · Harvard Medical School, Boston, Massachusetts, USA. · Department of Hematology, Medical University of Łodz, Łodz, Poland. · International Agency for Research on Cancer (IARC), Lyon, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom. · School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA. · Centre de Recerca en Epidemiologia Ambiental (CREAL), CIBER Epidemiología y Salud Pública (CIBERESP), Spain. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain. · National School of Public Health, Athens, Greece. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. · Oncology Department, ASL1 Massa Carrara, Massa Carrara, Italy. · National Institute for Health and Welfare, Department of Chronic Disease Prevention, Helsinki, Finland. · Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Dipartimento di Medicina Clinica E Chirurgia, Federico II Univeristy, Naples, Italy. · Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Public Health and Participation Directorate, Asturias, Spain. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Department of Surgical and Peroperative Sciences, Umeå University, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy. · Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark. · Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. · Hellenic Health Foundation, Athens, Greece. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, Hamburg, Germany. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. · Department of Social and Preventive Medicine, University at Buffalo, Buffalo, New York, USA. · New York University Cancer Institute, New York, New York, USA. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA. · Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA. · Department of Epidemiology, the Bloomberg School of Public Health, Baltimore, Maryland, USA. ·Oncotarget · Pubmed #27579533.

ABSTRACT: Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.

9 Article Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. 2016

Campa, Daniele / Pastore, Manuela / Gentiluomo, Manuel / Talar-Wojnarowska, Renata / Kupcinskas, Juozas / Malecka-Panas, Ewa / Neoptolemos, John P / Niesen, Willem / Vodicka, Pavel / Delle Fave, Gianfranco / Bueno-de-Mesquita, H Bas / Gazouli, Maria / Pacetti, Paola / Di Leo, Milena / Ito, Hidemi / Klüter, Harald / Soucek, Pavel / Corbo, Vincenzo / Yamao, Kenji / Hosono, Satoyo / Kaaks, Rudolf / Vashist, Yogesh / Gioffreda, Domenica / Strobel, Oliver / Shimizu, Yasuhiro / Dijk, Frederike / Andriulli, Angelo / Ivanauskas, Audrius / Bugert, Peter / Tavano, Francesca / Vodickova, Ludmila / Zambon, Carlo Federico / Lovecek, Martin / Landi, Stefano / Key, Timothy J / Boggi, Ugo / Pezzilli, Raffaele / Jamroziak, Krzysztof / Mohelnikova-Duchonova, Beatrice / Mambrini, Andrea / Bambi, Franco / Busch, Olivier / Pazienza, Valerio / Valente, Roberto / Theodoropoulos, George E / Hackert, Thilo / Capurso, Gabriele / Cavestro, Giulia Martina / Pasquali, Claudio / Basso, Daniela / Sperti, Cosimo / Matsuo, Keitaro / Büchler, Markus / Khaw, Kay-Tee / Izbicki, Jakob / Costello, Eithne / Katzke, Verena / Michalski, Christoph / Stepien, Anna / Rizzato, Cosmeri / Canzian, Federico. ·Department of Biology, University of Pisa, Pisa, Italy. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany. · Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic. · Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic. · Digestive and Liver Disease Unit, S. Andrea Hospital, 'Sapienza' University of Rome, Rome, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. · Oncological Department Massa Carrara Azienda USL Toscana Nord Ovest, Carrara, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy. · Division Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan. · Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. · Laboratory of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic. · Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic. · ARC-Net Research Centre, and Department of Diagnostics and Public Health University and Hospital Trust of Verona, Verona, Italy. · Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy. · Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan. · Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands. · Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic. · Department of Medicine - DIMED, University of Padova, Padova, Italy. · Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic. · Epidemiology Unit Nuffield Department of Population Health University of Oxford, Oxford, UK. · Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy. · Pancreas Unit, Department of Digestive System, Dant'Orsola-Malpighi Hospital, Bologna, Italy. · Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland. · Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic. · Blood Transfusion Service, Azienda Ospedaliero Universitaria Meyer, Florence, Italy. · Department of Surgery, Academic Medical Centre, Amsterdam, The Netherlands. · Colorectal Unit, First Department of Propaedeutic Surgery, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece. · Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padova, Italy. · Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy. · Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan. · Clinical Gerontology Unit, Addenbrooke’s Hospital, School of Clinical Medicine, University of Cambridge, Cambridge, UK. · Laboratory of Clinical, Transplant Immunology and Genetics, Copernicus Memorial Hospital, Lodz, Poland. · Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy. ·Oncotarget · Pubmed #27486979.

ABSTRACT: The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.

10 Article Mesopancreatic Stromal Clearance Defines Curative Resection of Pancreatic Head Cancer and Can Be Predicted Preoperatively by Radiologic Parameters: A Retrospective Study. 2016

Wellner, Ulrich F / Krauss, Tobias / Csanadi, Agnes / Lapshyn, Hryhoriy / Bolm, Louisa / Timme, Sylvia / Kulemann, Birte / Hoeppner, Jens / Kuesters, Simon / Seifert, Gabriel / Bausch, Dirk / Schilling, Oliver / Vashist, Yogesh K / Bruckner, Thomas / Langer, Mathias / Makowiec, Frank / Hopt, Ulrich T / Werner, Martin / Keck, Tobias / Bronsert, Peter. ·From the Clinic for Surgery, UKSH Campus Lübeck, Lübeck (UFW, HL, LB, DB, TK) · Clinic for Radiology (TK, ML) · Institute of Pathology (AC, ST, MW, PB) · Clinic for General and Visceral Surgery, University Medical Center Freiburg (BK, JH, SK, GS, FM, UTH) · Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg (OS) · Department of Surgery, University Hospital Hamburg-Eppendorf (UKE), Hamburg (YKV) · Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Heidelberg (TB) · Comprehensive Cancer Center Freiburg, Freiburg (ML, FM, UTH, MW, PB) · and German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany (OS, MW, PB). ·Medicine (Baltimore) · Pubmed #26817896.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a strong fibrotic stromal reaction and diffuse growth pattern. Peritumoral fibrosis is often evident during surgery but only distinguishable from tumor by microscopic examination. The aim of this study was to investigate the role of clearance of fibrotic stromal reaction at the mesopancreatic resection margin as a criterion for radical resection and preoperative assessment of resectability.Mesopancreatic stromal clearance status (S-status) was defined as the presence or absence (S+/S0) of fibrotic stromal reaction at the mesopancreatic resection margin. Detailed retrospective clinicopathologic re-evaluation of margin status and preoperative cross-sectional imaging was performed in a cohort of 91 patients operated for pancreatic head PDAC from 2001 to 2011.Conventional margin positive resection (R+, tumor cells directly at the margin) was found in 36%. However, S-status further divided the margin negative (R0) group into patients with median survival of 14 months versus 31 months (S+ versus S0, P = 0.005). Overall rate of S+ was 53%. S-status and lymph node ratio constituted the only independent predictors of survival. Stranding of the superior mesenteric artery fat sheath was the only independent radiologic predictor of S+ resection, and achieved a 71% correct prediction of S-status.Mesopancreatic stromal clearance is a major determinant of curative resection in PDAC, and preoperative prediction by cross-sectional imaging is possible, setting the basis for a new definition of borderline resectability.

11 Article Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. 2015

Childs, Erica J / Mocci, Evelina / Campa, Daniele / Bracci, Paige M / Gallinger, Steven / Goggins, Michael / Li, Donghui / Neale, Rachel E / Olson, Sara H / Scelo, Ghislaine / Amundadottir, Laufey T / Bamlet, William R / Bijlsma, Maarten F / Blackford, Amanda / Borges, Michael / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, H Bas / Canzian, Federico / Capurso, Gabriele / Cavestro, Giulia M / Chaffee, Kari G / Chanock, Stephen J / Cleary, Sean P / Cotterchio, Michelle / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gazouli, Maria / Hassan, Manal / Herman, Joseph M / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert N / Hung, Rayjean J / Janout, Vladimir / Key, Timothy J / Kupcinskas, Juozas / Kurtz, Robert C / Landi, Stefano / Lu, Lingeng / Malecka-Panas, Ewa / Mambrini, Andrea / Mohelnikova-Duchonova, Beatrice / Neoptolemos, John P / Oberg, Ann L / Orlow, Irene / Pasquali, Claudio / Pezzilli, Raffaele / Rizzato, Cosmeri / Saldia, Amethyst / Scarpa, Aldo / Stolzenberg-Solomon, Rachael Z / Strobel, Oliver / Tavano, Francesca / Vashist, Yogesh K / Vodicka, Pavel / Wolpin, Brian M / Yu, Herbert / Petersen, Gloria M / Risch, Harvey A / Klein, Alison P. ·Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. · 1] Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. [2] Department of Biology, University of Pisa, Pisa, Italy. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. · Department of Population Health, QIMR Berghofer Medical Research Institute, Kelvin Grove,Queensland, Australia. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA. · International Agency for Research on Cancer (IARC), Lyon, France. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA. · Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany. · 1] Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. [2] Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. [3] Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. [4] Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy. · Università Vita Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy. · 1] Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada. [2] Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. · 1] Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada. [2] Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and Medical Faculty Masaryk University, Brno, Czech Republic. · 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · Department of Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece. · Department of Radiation Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. · Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic. · Cancer Epidemiology Unit, University of Oxford, Oxford, UK. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. · Department of Biology, Section of Genetics, University of Pisa, Pisa, Italy. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA. · Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland. · Department of Oncology, Azienda USL 1 Massa Carrara, Massa Carrara, Italy. · Laboratory of Toxicogenomics, Institute of Public Health, Prague, Czech Republic. · National Institute for Health Research (NIHR) Pancreas Biomedical Research Unit, Liverpool Clinical Trials Unit and Cancer Research UK Clinical Trials Unit, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. · Department of Surgery, Gastroenterology and Oncology, University of Padua, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · ARC-NET-Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Rockville, Maryland, USA. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Italy. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. · 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. · 1] Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. [2] Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. ·Nat Genet · Pubmed #26098869.

ABSTRACT: Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.

12 Article Cyclin D1 is a strong prognostic factor for survival in pancreatic cancer: analysis of CD G870A polymorphism, FISH and immunohistochemistry. 2015

Bachmann, Kai / Neumann, Anna / Hinsch, Andrea / Nentwich, Michael F / El Gammal, Alexander T / Vashist, Yogesh / Perez, Daniel / Bockhorn, Maximilian / Izbicki, Jakob R / Mann, Oliver. ·Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ·J Surg Oncol · Pubmed #25470788.

ABSTRACT: BACKGROUND AND OBJECTIVE: Cyclin D1 is an important regulator protein for the G1-S cell cycle phase transition. The aim of this trial was to evaluate the impact of the CCND1 polymorphism G870A and corresponding protein expression and CCND1 amplification on the survival of the patients. METHODS: 425 patients with ductal pancreatic adenocarcinoma who underwent resection were included after histopathological confirmation. DNA was analyzed for Cyclin D1 polymorphisms, immunhistochemical examination and fluorescence in situ hybridization analysis of the tumor were performed. RESULTS: Overall, the mean survival was 22.9 months (20.5-25.3). The survival in patients with Cyclin D1 G870A polymorphism Adenine/Adenine was 15.1 months (95% CI 11.3-18.9), 21.5 months (17.4-25.6) for Adenine/Guanine, and 29.4 months (95% CI 23.8-35.0) for Guanine/Guanine (P = 0.003). A shorter survival was associated with strong/moderate protein expression in immunohistochemistry (IHC) compared to weak/no expression (P = 0.028). Additionally, a significant coherency between unfavourable polymorphism (AA/AG) and increased protein expression was detected (P = 0.005). CONCLUSIONS: A strong impact on survival of Cyclin D1 G870A polymorphism and the detected corresponding protein expression was found. The biological mechanism of CCND1 in carcinogenesis has not been fully examined; but at present Cyclin D1 seems to be an interesting biomarker for the prognosis of ductal adenocarcinoma.

13 Article Resection margin clearance in pancreatic cancer after implementation of the Leeds Pathology Protocol (LEEPP): clinically relevant or just academic? 2015

Gebauer, Florian / Tachezy, Michael / Vashist, Yogesh K / Marx, Andreas H / Yekebas, Emre / Izbicki, Jakob R / Bockhorn, Maximilian. ·Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Martinistrasse 52, 20246, Hamburg, Germany, fgebauer@uke.de. ·World J Surg · Pubmed #25270344.

ABSTRACT: BACKGROUND AND OBJECTIVES: The aim of this study was to assess the overall survival (OS) after R0/R1 resections in patients with pancreatic ductal adenocarcinoma (PDAC) of the pancreatic head after implementation of a standardized histopathologic protocol (Leeds Pathology Protocol, LEEPP). METHODS: One hundred and twenty-five patients underwent surgical resection because of PDAC of the pancreatic head. Patients were histopathologically examined according to a standardized protocol. Their oncologic outcome and clinicopathologic data were compared with those of a patient group before implementation of the LEEPP (n = 116). RESULTS: The R1 rate increased significantly from 13 to 52 %. There was no significant difference in OS between R0 and R1 resections. The median OS in patients with a tumor clearance of less than 2 mm from the resection margin was 15.1 months (12.1-18.1 months) versus 22.2 months (7.8-36.7 months) (P = 0.046). Multivariate analysis revealed a margin clearance or 2 mm and more as an independent prognosticator for OS. CONCLUSIONS: With applying the LEEPP, there was still no significant correlation between the R-status and OS in patients with PDAC. However, since a margin clearance of 2 mm or more is a predictive factor for OS, the R1 definition might have to be adapted in PDAC.

14 Article Serum EpCAM expression in pancreatic cancer. 2014

Gebauer, Florian / Struck, Lea / Tachezy, Michael / Vashist, Yogesh / Wicklein, Daniel / Schumacher, Udo / Izbicki, Jakob R / Bockhorn, Maximilian. ·Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany fgebauer@uke.uni-hamburg.de. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ·Anticancer Res · Pubmed #25202052.

ABSTRACT: BACKGROUND: Aim of the study was to assess the diagnostic and prognostic impact of serum EpCAM levels in patients with pancreatic adenocarcinoma (PDAC). MATERIALS AND METHODS: For quantitative measurement of preoperative serum EpCAM levels, a sandwich enzyme immunoassay kit was used (ELISA). Sixty-six patients with PDAC were included in the study and for comparison 43 patients with chronic pancreatitis and 104 healthy blood donors without any clinical evidence of cancer were analyzed as well. RESULTS: Serum EpCAM levels differed significantly between the groups. The average value for patients with PDAC was 0.240±0.833 ng/ml, in patients with CP 0.192±0.590 ng/ml and 0.626±1.164 ng/ml in normal blood donor sera. With a cut-off level of 0.422 ng/ml EpCAM, the calculated sensitivity of detecting PDAC was 66.7% with corresponding specificity of 77.5%. A correlation with clinico-pathological data (pT, pN, M, R-status, grading, UICC stage) was not found and in addition there was no difference in overall survival between patients with high- and low-preoperative serum EpCAM levels. CONCLUSION: EpCAM can be detected in the serum in patients with PDAC though the sensitivity for detecting PDAC is low and a correlation with clinical parameters was not found.

15 Article Single versus double Roux-en-Y reconstruction techniques in pancreaticoduodenectomy: a comparative single-center study. 2014

Uzunoglu, Faik G / Reeh, Matthias / Wollstein, Romy / Melling, Nathaniel / Perez, Daniel / Vashist, Yogesh K / Bogoevski, Dean / Izbicki, Jakob R / Bockhorn, Maximilian. ·Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany. ·World J Surg · Pubmed #25189443.

ABSTRACT: BACKGROUND: The aim of this study was to analyze the impact of single Roux-en-Y reconstruction (RYR) and double Roux-en-Y reconstruction (dRYR) on intraoperative outcome and postoperative morbidity and mortality after pancreaticoduodenectomy (PD) or pylorus-preserving pancreaticoduodenectomy (PPPD). METHODS: All patients who underwent surgery between 2000 and 2005 for dRYR and RYR after PD or PPPD at the study hospital were evaluated for inclusion. Comparison of categorical patient characteristics was performed using the χ (2) test. Data were reported as median and range. Differences were analyzed with the Mann-Whitney U test. Postoperative complications were graded according to the Clavien-Dindo classification scheme and the recommendations of the International Study Group of Pancreatic Surgery (ISGPS). RESULTS: A total of 319 patients were included in final analysis. The median time of surgery was significantly shorter when performing a single Roux-en-Y loop reconstruction (55 min in PD and 50 min in PPPD) (p < 0.001). Saved time had a significant effect on the cost of surgery (p < 0.001). No impact on postoperative outcome according to the Clavien-Dindo classification, the ISGPS definitions of pancreatic fistulas, and delayed gastric emptying was evident. The relaparotomy rate due to severe postoperative hemorrhage was significantly higher in the dRYR PD cohort (2.2 vs. 11.9 %, p < 0.001). CONCLUSIONS: Double Roux-en-Y reconstruction of the alimentary tract is not beneficial in terms of surgical outcome and postoperative morbidity and mortality and should be avoided due to unnecessarily prolonged surgery.

16 Article Prognostic significance of Zinc finger E-box binding homeobox 1 (ZEB1) expression in cancer cells and cancer-associated fibroblasts in pancreatic head cancer. 2014

Bronsert, Peter / Kohler, Ilona / Timme, Sylvia / Kiefer, Selina / Werner, Martin / Schilling, Oliver / Vashist, Yogesh / Makowiec, Frank / Brabletz, Thomas / Hopt, Ulrich T / Bausch, Dirk / Kulemann, Birte / Keck, Tobias / Wellner, Ulrich F. ·Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany; Comprehensive Cancer Center, Freiburg, Germany. Electronic address: peter.bronsert@uniklinik-freiburg.de. · Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany. · Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany; Comprehensive Cancer Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany. · Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany. · Comprehensive Cancer Center, Freiburg, Germany; Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany. · German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany. · Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany. · Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany; Clinic for Surgery, University Clinic Schleswig-Holstein Campus, Lübeck, Germany. ·Surgery · Pubmed #24929761.

ABSTRACT: BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by an aggressive biology and poor prognosis. Experimental evidence has suggested a role for the transcriptional repressor Zinc finger E-box binding homeobox 1 (ZEB1) in epithelial-mesenchymal transition, invasion, and metastasis in PDAC. ZEB1 expression has been observed in cancer cells as well as stromal fibroblasts. Our study aimed to evaluate the prognostic value of ZEB1 expression in PDAC tissue. METHODS: Patient baseline and follow-up data were extracted from a prospectively maintained database. After clinicopathologic re-review, serial sliced tissue slides were immunostained for ZEB1, E-cadherin, vimentin, and pan-cytokeratin. ZEB1 expression in cancer cells and adjacent stromal fibroblasts was graded separately and correlated to routine histopathologic parameters and survival after resection. RESULTS: A total of 117 cases of PDAC were included in the study. High ZEB1 expression in cancer cells and in stromal cancer-associated fibroblasts was associated with poor prognosis. There was also a trend for poor prognosis with a lymph node ratio of greater than 0.10. In line with its role as an inducer of epithelial-mesenchymal transition, ZEB1 expression in cancer cells was positively correlated with Vimentin expression and negatively with E-Cadherin expression. In multivariate analysis, stromal ZEB1 expression grade was the only independent factor of survival after resection. CONCLUSION: Our data suggest that ZEB1 expression in cancer cells as well as in stromal fibroblasts are strong prognostic factors in PDAC. Stromal ZEB1 expression is identified for the first time as an independent predictor of survival after resection of PDAC. This observation suggests that therapies targeting ZEB1 and its downstream pathways could hit both cancer cells and supporting cancer-associated fibroblasts.

17 Article The multifunctional growth factor midkine promotes proliferation and migration in pancreatic cancer. 2014

Rawnaq, Tamina / Dietrich, Luisa / Wolters-Eisfeld, Gerrit / Uzunoglu, Faik G / Vashist, Yogesh K / Bachmann, Kai / Simon, Ronald / Izbicki, Jakob R / Bockhorn, Maximilian / Güngör, Cenap. ·Authors' Affiliations: Department of General, Visceral and Thoracic Surgery, Experimental Oncology and 2Institute for Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ·Mol Cancer Res · Pubmed #24567526.

ABSTRACT: IMPLICATIONS: This study presents novel MK functions and new upstream signaling effectors that induce its expression to promote PDAC and therefore defines an attractive new therapeutic target in pancreatic cancer.

18 Article VEGFR-2, CXCR-2 and PAR-1 germline polymorphisms as predictors of survival in pancreatic carcinoma. 2013

Uzunoglu, F G / Kolbe, J / Wikman, H / Güngör, C / Bohn, B A / Nentwich, M F / Reeh, M / König, A M / Bockhorn, M / Kutup, A / Mann, O / Izbicki, J R / Vashist, Y K. ·Department of General, Visceral and Thoracic Surgery, University Medical Center of Hamburg-Eppendorf, Martinistr. 52, 20246Hamburg, Germany. vashist@uke.de ·Ann Oncol · Pubmed #23293110.

ABSTRACT: BACKGROUND: Hypoxic environment of pancreatic cancer (PC) implicates high vascular in-growth, which may be influenced by angiogenesis-related germline polymorphisms. Our purpose was to evaluate polymorphisms of vascular endothelial growth factor receptor 2 (VEGFR-2), CXC chemokine receptor 2 (CXCR-2), proteinase-activated receptor 1 (PAR-1) and endostatin (ES) as prognostic markers for disease-free (DFS) and overall survival (OS) in PC. PATIENTS AND METHODS: Genotyping of 173 patients, surgically treated for PC between 2004 and 2011, was carried out by TaqMan(®) genotyping assays or polymerase chain reaction. Chi-square test, Kaplan-Meier estimator and Cox regression hazard model were used to assess the prognostic value of selected polymorphisms. RESULTS: VEGFR-2 -906 T/T and PAR-1 -506 Del/Del genotypes predicted longer DFS (P = 0.003, P = 0.014) and OS (VEGFR-2 -906, P = 0.011). CXCR-2 +1208 T/T genotype was a negative predictor for DFS (P < 0.0001). Combined analysis for DFS and OS indicated that patients with the fewest number of favorable genotypes simultaneously present (VEGFR-2 -906 T/T, CXCR-2 +1208 C/T or C/C and PAR-1 -506 Del/Del) were at the highest risk for recurrence or death (P < 0.0001). CONCLUSION: VEGFR-2 -906 C>T, CXCR-2 +1208 C>T and PAR-1 -506 Ins/Del polymorphisms are potential predictors for survival in PC.

19 Article LigaSure™ vs. conventional dissection techniques in pancreatic surgery--a prospective randomised single-centre trial. 2013

Uzunoglu, Faik Guentac / Bockhorn, Maximilian / Fink, Judith Alexandra / Reeh, Matthias / Vettorazzi, Eik / Gawad, Karim Abdel / Bogoevski, Dean / Vashist, Yogesh Kumar / Tsui, Tung Yu / Koenig, Alexandra / Mann, Oliver / Izbicki, Jakob Robert. ·Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Martinistraße, 52 20246, Hamburg, Germany. ·J Gastrointest Surg · Pubmed #23250820.

ABSTRACT: BACKGROUND: Surgical procedures in pancreatic surgery are well established, but still involve time-consuming manual dissection. We compared the use of LigaSure with conventional dissection techniques in pancreatic surgery in a prospective randomised single-centre trial (registration number: NCT00850291). METHODS: Patients with tumours of the pancreatic head that were assumed to be technically resectable were randomised to LigaSure or conventional surgery. The primary endpoint of this study was overall operation time. Secondary endpoints were preparation time until tumour resection, intraoperative blood loss, number of given units of packed red blood cells, costs of surgery, postoperative morbidity, length of hospital stay and mortality. RESULTS: There was no difference in overall operation time between the two groups (P = 0.227). Median costs for pancreatic surgery were significantly less in the conventional group with €3,047 (range 2,004-5,543) vs. €3,527 (range 2,516-5,056, P = 0.009). Preparation time, intraoperative blood loss, number of units of packed red blood cells, postoperative morbidity, length of hospital stay and mortality did not differ between the two groups. CONCLUSION: Our data indicate that the LigaSure device is equivalent to conventional dissection modalities in pancreatic surgery.

20 Article Ultrasonic dissection versus conventional dissection techniques in pancreatic surgery: a randomized multicentre study. 2012

Uzunoglu, Faik G / Stehr, Anne / Fink, Judith A / Vettorazzi, Eik / Koenig, Alexandra / Gawad, Karim A / Vashist, Yogesh K / Kutup, Asad / Mann, Oliver / Gavazzi, Francesca / Zerbi, Alessandro / Bassi, Claudio / Dervenis, Christos / Montorsi, Marco / Bockhorn, Maximilian / Izbicki, Jakob R. ·Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany. ·Ann Surg · Pubmed #23095609.

ABSTRACT: OBJECTIVE: : This prospective randomized multicenter trial was performed to assess the potential benefits of ultrasonic energy dissection compared with conventional dissection techniques in pancreatic surgery. BACKGROUND: : Surgical procedures for tumors of the pancreatic head involve time-consuming manual dissection. The primary hypothesis was that use of ultrasonic tissue and vessel dissection would lead to substantial saving in operative time during pancreatic resection. METHODS: : Patients eligible for pancreaticoduodenectomy (PD) or pylorus-preserving PD (PPPD) were randomized to group A (dissection with ultrasonic device) or group B (conventional dissection) from March 2009 to May 2011. The primary endpoint was overall duration of operation time. Secondary endpoints were time to end of resection phase, intraoperative blood loss, number of transfused units of blood, and postoperative morbidity. RESULTS: : Analysis of primary and secondary endpoints included 101 patients, who received either PD or PPPD. Demographical characteristics and clinical parameters were similar in both groups. The use of an ultrasonic dissection device did not significantly reduce overall operation time (median 316 minutes in group A and 319 minutes in group B, P = 0.95) and did not significantly increase the costs of surgery. Analysis of secondary endpoints revealed no difference in postoperative course. CONCLUSIONS: : Tissue dissection and vessel closure using an ultrasonic device is equivalent to dissection with conventional techniques in pancreatic surgery.

21 Article Losses at chromosome 4q are associated with poor survival in operable ductal pancreatic adenocarcinoma. 2012

Luebke, A M / Baudis, M / Matthaei, H / Vashist, Y K / Verde, P E / Hosch, S B / Erbersdobler, A / Klein, C A / Izbicki, J R / Knoefel, W T / Stoecklein, N H. ·Klinik und Poliklinik für Allgemein-, Visceral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany. ·Pancreatology · Pubmed #22487468.

ABSTRACT: Here we tested the prognostic impact of genomic alterations in operable localized pancreatic ductal adenocarcinoma (PDAC). Fifty-two formalin-fixed and paraffin-embedded primary PDAC were laser micro-dissected and were investigated by comparative genomic hybridization after whole genome amplification using an adapter-linker PCR. Chromosomal gains and losses were correlated to clinico-pathological parameters and clinical follow-up data. The most frequent aberration was loss on chromosome 17p (65%) while the most frequent gains were detected at 2q (41%) and 8q (41%), respectively. The concomitant occurrence of losses at 9p and 17p was found to be statistically significant. Higher rates of chromosomal losses were associated with a more advanced primary tumor stage and losses at 9p and 18q were significantly associated with presence of lymphatic metastasis (chi-square: p = 0.03, p = 0.05, respectively). Deletions on chromosome 4 were of prognostic significance for overall survival and tumor recurrence (Cox-multivariate analysis: p = 0.026 and p = 0.021, respectively). In conclusion our data suggest the common alterations at chromosome 8q, 9p, 17p and 18q as well as the prognostic relevant deletions on chromosome 4q as relevant for PDAC progression. Our comprehensive data from 52 PDAC should provide a basis for future studies with a higher resolution to discover the relevant genes located within the chromosomal aberrations identified.

22 Article Disseminated tumor cells in pancreatic cancer-an independent prognosticator of disease progression and survival. 2012

Effenberger, Katharina E / Schroeder, Cornelia / Eulenburg, Christine / Reeh, Matthias / Tachezy, Michael / Riethdorf, Sabine / Vashist, Yogesh K / Izbicki, Jakob R / Pantel, Klaus / Bockhorn, Maximilian. ·Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany. k.effenberger@uke.de ·Int J Cancer · Pubmed #21932421.

ABSTRACT: Pancreatic cancer is one of the most devastating cancers with a 6-month median survival and a 5-year survival rate of 3-5%. Still important aspects of its aggressive biology remain elusive and advanced therapeutic regimens have not been substantially successful. We investigated the prognostic role of disseminated tumor cells (DTC) in bone marrow, a reservoir for early DTC potentially contributing to metastatic progression, of pancreatic cancer patients. After exclusion of patients with different postsurgery diagnosis or missing DTC status (n = 40) a total of 175 patients remained for final analyses. One-hundred and nineteen patients were male and 96 female with a median age of 67 years, 96 patients underwent complete resection. Bone marrow aspirates taken at primary surgery were analyzed for DTC by an immunocytochemical cytokeratin assay and correlated to survival data. Overall 13.7% of patient samples (24/175) harbored DTC in their bone marrow. Histopathological parameters did not correlate significantly. Univariate survival analysis revealed a borderline significant correlation between DTC and decreased progression-free survival (p = 0.069), and was significant for overall survival (p = 0.036). Regarding patients with resected tumors, the respective p-values were 0.058 for progression-free and 0.016 for overall survival. Importantly, the prognostic influence was independent from other risk factors as shown by multivariate analyses for progression-free (p = 0.030, HR: 2.057; CI (95%): 1.073-3.943) and overall survival (p = 0.006, HR: 2.283; CI (95%): 1.260-4.135). The presence of DTC in bone marrow is a strong and independent prognostic factor of survival in patients with pancreatic cancer. Thus, bone-targeting may be a new future therapeutic option for DTC-positive patients.

23 Article Multivisceral resections in pancreatic cancer: identification of risk factors. 2011

Burdelski, Christoph M / Reeh, Matthias / Bogoevski, Dean / Gebauer, Florian / Tachezy, Michael / Vashist, Yogesh K / Cataldegirmen, Guellue / Yekebas, Emre / Izbicki, Jakob R / Bockhorn, Maximilian. ·Department of General, Visceral, and Thoracic Surgery, University Medical Center, Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany. c.burdelski@uke.de ·World J Surg · Pubmed #21938586.

ABSTRACT: BACKGROUND: There is an assumption that multivisceral resections (MVRs) in patients with a pancreatic malignancy are associated with higher morbidity. The oncologic benefit, however, remains controversial. METHODS: The aim was to identify risk factors for complications in cases of MVR in patients with pancreatic cancer. Of 1099 patients who underwent major pancreatic resection at our institution between January 1992 and October 2008, a total of 55 were treated with an MVR involving resection of one or more additional organs. This group was compared with 154 patients who had palliative bypass surgery and 303 patients who underwent standard pancreatic head resection. RESULTS: Multivisceral resection patients had an overall higher incidence of major surgical complications (p < 0.001). In-hospital mortality was comparable in all groups. Median survival after MVR was inferior to that after standard resection but was significantly better than that after palliative bypass. Univariate logistic regression analysis identified concomitant colon, kidney, and liver resections and any intraoperative transfusion as predictors of complications; in the multivariate analysis, only kidney resections and any intraoperative transfusion were confirmed predictors. In contrast, T status, kidney resection, resection of four or more organs, any postoperative transfusion, and intensive care unit stay of >2 days were identified as predictors of survival in the univariate Cox regression analysis; in the multivariate analysis, only the T status was confirmed. Median survival after MVR was 16 months, after palliative bypass 6 months, and after standard resection 18 months (p < 0.001). CONCLUSIONS: Multivisceral resections are technically feasible procedures with increased survival when compared to palliative bypass procedures. The incidence of postoperative complications was increased with kidney resection and when intraoperative transfusion was required.

24 Article Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer. 2011

Güngör, Cenap / Zander, Hilke / Effenberger, Katharina E / Vashist, Yogesh K / Kalinina, Tatyana / Izbicki, Jakob R / Yekebas, Emre / Bockhorn, Maximilian. ·Department of General-, Visceral- and Thoracic Surgery, Campus Research, University Hospital Hamburg-Eppendorf, Hamburg, Germany. c.guengoer@uke.de ·Cancer Res · Pubmed #21632553.

ABSTRACT: The incidence of pancreatic ductal adenocarcinoma (PDAC) nearly equals its mortality rate, partly because most PDACs are intrinsically chemoresistant and thus largely untreatable. It was found recently that chemoresistant PDAC cells overexpress the Notch-2 receptor and have undergone epithelial-mesenchymal transition (EMT). In this study, we show that these two phenotypes are interrelated by expression of Midkine (MK), a heparin-binding growth factor that is widely overexpressed in chemoresistant PDAC. Gemcitabine, the front-line chemotherapy used in PDAC treatment, induced MK expression in a dose-dependent manner, and its RNAi-mediated depletion was associated with sensitization to gemcitabine treatment. We identified an interaction between the Notch-2 receptor and MK in PDAC cells. MK-Notch-2 interaction activated Notch signaling, induced EMT, upregulated NF-κB, and increased chemoresistance. Taken together, our findings define an important pathway of chemoresistance in PDAC and suggest novel strategies for its clinical attack.

25 Article Heme oxygenase-1 germ line GTn promoter polymorphism is an independent prognosticator of tumor recurrence and survival in pancreatic cancer. 2011

Vashist, Yogesh K / Uzungolu, Guentac / Kutup, Asad / Gebauer, Florian / Koenig, Alexandra / Deutsch, Lena / Zehler, Oliver / Busch, Philipp / Kalinin, Viacheslav / Izbicki, Jakob R / Yekebas, Emre F. ·Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. vashist@uke.de ·J Surg Oncol · Pubmed #21495030.

ABSTRACT: BACKGROUND: Heme oxygenase-1 (HO-1) correlates with aggressive tumor behavior and chemotherapy resistance in pancreatic cancer (PC). We evaluated the prognostic value of the basal transcription controlling germ line GTn repeat polymorphism (GTn) in the promoter region of the HO-1 gene in PC. PATIENTS AND METHODS: We determined the GTn in 100 controls and 150 PC patients. DNA was extracted from blood leukocytes and GTn determined by PCR, electrophoresis, and sequencing. Clinicopathological parameters, disease-free, and overall survival (DFS, OS) were correlated with GTn. RESULTS: Three genotypes were defined based on short (S) <25 and long (L) ≥25 GTn repeat alleles. In PC patients, a steadily increasing risk was evident between LL, SL, and SS genotype patients for larger tumor size, presence of lymph node metastasis, poor tumor differentiation and higher recurrence rate (P < 0.001 each). The SS genotype displayed the most aggressive tumor biology. The LL genotype had the best and the SS genotype the worst DFS and OS (P < 0.001 each). The GTn genotype was the strongest prognostic factor for recurrence and survival (P < 0.001 each). CONCLUSION: The GTn repeat polymorphism is a strong prognostic marker for recurrence and survival in PC patients.

Next