Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Antonia Trichopoulou
Based on 29 articles published since 2010
(Why 29 articles?)
||||

Between 2010 and 2020, A. Trichopoulou wrote the following 29 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
Pages: 1 · 2
1 Article Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition. 2020

Obón-Santacana, Mireia / Luján-Barroso, Leila / Freisling, Heinz / Naudin, Sabine / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Rebours, Vinciane / Kühn, Tilman / Katzke, Verena / Boeing, Heiner / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Lasheras, Cristina / Rodríguez-Barranco, Miguel / Amiano, Pilar / Santiuste, Carmen / Ardanaz, Eva / Khaw, Kay-Thee / Wareham, Nicholas J / Schmidt, Julie A / Aune, Dagfinn / Trichopoulou, Antonia / Thriskos, Paschalis / Peppa, Eleni / Masala, Giovanna / Grioni, Sara / Tumino, Rosario / Panico, Salvatore / Bueno-de-Mesquita, Bas / Sciannameo, Veronica / Vermeulen, Roel / Sonestedt, Emily / Sund, Malin / Weiderpass, Elisabete / Skeie, Guri / González, Carlos A / Riboli, Elio / Duell, Eric J. ·Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Department of Nursing of Public Health, Mental Health and Maternity and Child Health School of Nursing, Universitat de Barcelona, Barcelona, Spain. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France. · Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, DHU Unity, AP-HP, Clichy, and Paris-Diderot University, Paris, France. · Inserm UMR1149, DHU Unity, and Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Reserach Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Hellenic Health Foundation, Athens, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M. P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Unit of Epidemiology, Regional Health Service ASL TO3, Turin, Italy. · Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands. · Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · International Agency for Research on Cancer, Lyon, France. · Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. ·Int J Cancer · Pubmed #31107546.

ABSTRACT: Four epidemiologic studies have assessed the association between nut intake and pancreatic cancer risk with contradictory results. The present study aims to investigate the relation between nut intake (including seeds) and pancreatic ductal adenocarcinoma (PDAC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Cox proportional hazards models were used to estimate hazards ratio (HR) and 95% confidence intervals (95% CI) for nut intake and PDAC risk. Information on intake of nuts was obtained from the EPIC country-specific dietary questionnaires. After a mean follow-up of 14 years, 476,160 participants were eligible for the present study and included 1,283 PDAC cases. No association was observed between consumption of nuts and PDAC risk (highest intake vs nonconsumers: HR, 0.89; 95% CI, 0.72-1.10; p-trend = 0.70). Furthermore, no evidence for effect-measure modification was observed when different subgroups were analyzed. Overall, in EPIC, the highest intake of nuts was not statistically significantly associated with PDAC risk.

2 Article Healthy lifestyle and the risk of pancreatic cancer in the EPIC study. 2019

Naudin, Sabine / Viallon, Vivian / Hashim, Dana / Freisling, Heinz / Jenab, Mazda / Weiderpass, Elisabete / Perrier, Flavie / McKenzie, Fiona / Bueno-de-Mesquita, H Bas / Olsen, Anja / Tjønneland, Anne / Dahm, Christina C / Overvad, Kim / Mancini, Francesca R / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Katzke, Verena / Kaaks, Rudolf / Bergmann, Manuela / Boeing, Heiner / Peppa, Eleni / Karakatsani, Anna / Trichopoulou, Antonia / Pala, Valeria / Masala, Giovana / Panico, Salvatore / Tumino, Rosario / Sacerdote, Carlotta / May, Anne M / van Gils, Carla H / Rylander, Charlotta / Borch, Kristin Benjaminsen / Chirlaque López, María Dolores / Sánchez, Maria-Jose / Ardanaz, Eva / Quirós, José Ramón / Amiano Exezarreta, Pilar / Sund, Malin / Drake, Isabel / Regnér, Sara / Travis, Ruth C / Wareham, Nick / Aune, Dagfinn / Riboli, Elio / Gunter, Marc J / Duell, Eric J / Brennan, Paul / Ferrari, Pietro. ·Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France. · Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. · Nutritional Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Director Office, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Environment and Radiation section, Agency for Research on Cancer, World Health Organization, Lyon, France. · Departement for Determinants of Chronic Diseases (Former), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepathology, University Medical Center, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark. · CESP, Faculté de médecine (USVQ), Université Paris-Sud, INSERM, Université Paris-Saclay, Villejuif, France. · Inserm UMR1018, Institut Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, France. · Inserm UMR1149, DHU Unit, Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital of Athens, Haidari, Greece. · School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy. · Department of Clinical and Experimental Medecine, University Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, Civic M.P.Arezzo Hospital, Ragusa, Italy. · Unit of Cancer Epidemiology, Città della Salute e della Scienza University, Hospital and Center for Cancer Prevention (CPO), Turin, Italy. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain. · Spanish Consortium for Research and Public Health (CIBERESP), Madrid, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria, Universidad de Granada, Granada, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France. ferrarip@iarc.fr. ·Eur J Epidemiol · Pubmed #31564045.

ABSTRACT: Pancreatic cancer (PC) is a highly fatal cancer with currently limited opportunities for early detection and effective treatment. Modifiable factors may offer pathways for primary prevention. In this study, the association between the Healthy Lifestyle Index (HLI) and PC risk was examined. Within the European Prospective Investigation into Cancer and Nutrition cohort, 1113 incident PC (57% women) were diagnosed from 400,577 participants followed-up for 15 years (median). HLI scores combined smoking, alcohol intake, dietary exposure, physical activity and, in turn, overall and central adiposity using BMI (HLI

3 Article Methodological issues in a prospective study on plasma concentrations of persistent organic pollutants and pancreatic cancer risk within the EPIC cohort. 2019

Gasull, Magda / Pumarega, José / Kiviranta, Hannu / Rantakokko, Panu / Raaschou-Nielsen, Ole / Bergdahl, Ingvar A / Sandanger, Torkjel Manning / Goñi, Fernando / Cirera, Lluís / Donat-Vargas, Carolina / Alguacil, Juan / Iglesias, Mar / Tjønneland, Anne / Overvad, Kim / Mancini, Francesca Romana / Boutron-Ruault, Marie-Christine / Severi, Gianluca / Johnson, Theron / Kühn, Tilman / Trichopoulou, Antonia / Karakatsani, Anna / Peppa, Eleni / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Verschuren, Monique / Vermeulen, Roel / Rylander, Charlotta / Nøst, Therese Haugdahl / Rodríguez-Barranco, Miguel / Molinuevo, Amaia / Chirlaque, María-Dolores / Ardanaz, Eva / Sund, Malin / Key, Tim / Ye, Weimin / Jenab, Mazda / Michaud, Dominique / Matullo, Giuseppe / Canzian, Federico / Kaaks, Rudolf / Nieters, Alexandra / Nöthlings, Ute / Jeurnink, Suzanne / Chajes, Veronique / Matejcic, Marco / Gunter, Marc / Aune, Dagfinn / Riboli, Elio / Agudo, Antoni / Gonzalez, Carlos Alberto / Weiderpass, Elisabete / Bueno-de-Mesquita, Bas / Duell, Eric J / Vineis, Paolo / Porta, Miquel. ·Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · National Institute for Health and Welfare, Department of Health Security, Kuopio, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Biobank Research, Umeå University, Umeå, Sweden; Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden. · Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute; Public Health Laboratory in Gipuzkoa, Basque Government, San Sebastian, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB - Arrixaca, Murcia, Spain. · Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad de Huelva, Huelva, Spain. · Department of Pathology, Hospital del Mar (PSMar), Barcelona, Spain. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · CESP, Faculté de Médecine - Univ. Paris-Sud, Faculté de Médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France; Gustave Roussy, Villejuif, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain. · Hellenic Health Foundation, Athens, Greece. · Hellenic Health Foundation, Athens, Greece; 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy. · Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. · Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria, Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB - Arrixaca, Murcia, Spain; Department of Health and Social Sciences, University of Murcia, Murcia, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Biobank Research, Umeå University, Umeå, Sweden; Department of Medical Epidemiology and Biostatistics Karolinska Institutet, Stockholm, Sweden. · Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), Lyon, France. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department Medical Sciences, University of Torino, Italian Institute for Genomic Medicine -IIGM/HuGeF, Torino, Italy. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Center for Chronic Immunodeficiency, Molecular Epidemiology, University Medical Center Freiburg, Freiburg, Germany. · Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany. · Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. · Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Medical Epidemiology and Biostatistics Karolinska Institutet, Stockholm, Sweden; Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway; Genetic Epidemiology Group, Folkhälsan Research Center, Faculty of Medicine, University of Helsinki, Helsinki, Finland. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Electronic address: mporta@imim.es. ·Environ Res · Pubmed #30529143.

ABSTRACT: BACKGROUND: The use of biomarkers of environmental exposure to explore new risk factors for pancreatic cancer presents clinical, logistic, and methodological challenges that are also relevant in research on other complex diseases. OBJECTIVES: First, to summarize the main design features of a prospective case-control study -nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort- on plasma concentrations of persistent organic pollutants (POPs) and pancreatic cancer risk. And second, to assess the main methodological challenges posed by associations among characteristics and habits of study participants, fasting status, time from blood draw to cancer diagnosis, disease progression bias, basis of cancer diagnosis, and plasma concentrations of lipids and POPs. Results from etiologic analyses on POPs and pancreatic cancer risk, and other analyses, will be reported in future articles. METHODS: Study subjects were 1533 participants (513 cases and 1020 controls matched by study centre, sex, age at blood collection, date and time of blood collection, and fasting status) enrolled between 1992 and 2000. Plasma concentrations of 22 POPs were measured by gas chromatography - triple quadrupole mass spectrometry (GC-MS/MS). To estimate the magnitude of the associations we calculated multivariate-adjusted odds ratios by unconditional logistic regression, and adjusted geometric means by General Linear Regression Models. RESULTS: There were differences among countries in subjects' characteristics (as age, gender, smoking, lipid and POP concentrations), and in study characteristics (as time from blood collection to index date, year of last follow-up, length of follow-up, basis of cancer diagnosis, and fasting status). Adjusting for centre and time of blood collection, no factors were significantly associated with fasting status. Plasma concentrations of lipids were related to age, body mass index, fasting, country, and smoking. We detected and quantified 16 of the 22 POPs in more than 90% of individuals. All 22 POPs were detected in some participants, and the smallest number of POPs detected in one person was 15 (median, 19) with few differences by country. The highest concentrations were found for p,p'-DDE, PCBs 153 and 180 (median concentration: 3371, 1023, and 810 pg/mL, respectively). We assessed the possible occurrence of disease progression bias (DPB) in eight situations defined by lipid and POP measurements, on one hand, and by four factors: interval from blood draw to index date, tumour subsite, tumour stage, and grade of differentiation, on the other. In seven of the eight situations results supported the absence of DPB. CONCLUSIONS: The coexistence of differences across study centres in some design features and participant characteristics is of relevance to other multicentre studies. Relationships among subjects' characteristics and among such characteristics and design features may play important roles in the forthcoming analyses on the association between plasma concentrations of POPs and pancreatic cancer risk.

4 Article CA19-9 and apolipoprotein-A2 isoforms as detection markers for pancreatic cancer: a prospective evaluation. 2019

Honda, Kazufumi / Katzke, Verena A / Hüsing, Anika / Okaya, Shinobu / Shoji, Hirokazu / Onidani, Kaoru / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Weiderpass, Elisabete / Vineis, Paolo / Muller, David / Tsilidis, Kostas / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Aleksandrova, Krasimira / Boeing, Heiner / Bueno-de-Mesquita, H Bas / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Khaw, Kay-Tee / Wareham, Nick / Travis, Ruth C / Merino, Susana / Duell, Eric J / Rodríguez-Barranco, Miguel / Chirlaque, María Dolores / Barricarte, Aurelio / Rebours, Vinciane / Boutron-Ruault, Marie-Chiristine / Romana Mancini, Francesca / Brennan, Paul / Scelo, Ghislaine / Manjer, Jonas / Sund, Malin / Öhlund, Daniel / Canzian, Federico / Kaaks, Rudolf. ·Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan. · Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan. · Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy. · Department of Molecular and Genetic Epidemiology, IIGM - Italian Institute for Genomic Medicine, Torino, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany. · Department of Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, School of Medicine, WHO Collaborating Center for Nutrition and Health. · Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. · Cancer Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Public Health Directorate, Asturias, Spain, Acknowledgment of funds: Regional Government of Asturias. · PanC4 Consortium, Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. · Department of Epidemiology, Murcia Regional Health Council, CIBER Epidemiología y Salud Pública (CIBERESP), Spain, Ronda de Levante, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM - UMR 1149, University Paris 7, Paris, France. · CESP, INSERM U1018, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif, France. · Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Gustave Roussy, Villejuif, France. · Section of Genetics, International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France. · Department of Surgery, Skåne University Hospital, Lund University, Lund, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Radiation Sciences and Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden. · Genomic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ·Int J Cancer · Pubmed #30259989.

ABSTRACT: Recently, we identified unique processing patterns of apolipoprotein A2 (ApoA2) in patients with pancreatic cancer. Our study provides a first prospective evaluation of an ApoA2 isoform ("ApoA2-ATQ/AT"), alone and in combination with carbohydrate antigen 19-9 (CA19-9), as an early detection biomarker for pancreatic cancer. We performed ELISA measurements of CA19-9 and ApoA2-ATQ/AT in 156 patients with pancreatic cancer and 217 matched controls within the European EPIC cohort, using plasma samples collected up to 60 months prior to diagnosis. The detection discrimination statistics were calculated for risk scores by strata of lag-time. For CA19-9, in univariate marker analyses, C-statistics to distinguish future pancreatic cancer patients from cancer-free individuals were 0.80 for plasma taken ≤6 months before diagnosis, and 0.71 for >6-18 months; for ApoA2-ATQ/AT, C-statistics were 0.62, and 0.65, respectively. Joint models based on ApoA2-ATQ/AT plus CA19-9 significantly improved discrimination within >6-18 months (C = 0.74 vs. 0.71 for CA19-9 alone, p = 0.022) and ≤ 18 months (C = 0.75 vs. 0.74, p = 0.022). At 98% specificity, and for lag times of ≤6, >6-18 or ≤ 18 months, sensitivities were 57%, 36% and 43% for CA19-9 combined with ApoA2-ATQ/AT, respectively, vs. 50%, 29% and 36% for CA19-9 alone. Compared to CA19-9 alone, the combination of CA19-9 and ApoA2-ATQ/AT may improve detection of pancreatic cancer up to 18 months prior to diagnosis under usual care, and may provide a useful first measure for pancreatic cancer detection prior to imaging.

5 Article Dietary folate intake and pancreatic cancer risk: Results from the European prospective investigation into cancer and nutrition. 2019

Park, Jin Young / Bueno-de-Mesquita, H Bas / Ferrari, Pietro / Weiderpass, Elisabete / de Batlle, Jordi / Tjønneland, Anne / Kyro, Cecilie / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Katzke, Verena / Kühn, Tilman / Boeing, Heiner / Trichopoulou, Antonia / La Vecchia, Carlo / Kritikou, Maria / Masala, Giovanna / Pala, Valeria / Tumino, Rosario / Panico, Salvatore / Peeters, Petra H / Skeie, Guri / Merino, Susana / Duell, Eric J / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, Maria-Dolores / Ardanaz, Eva / Gylling, Björn / Schneede, Jörn / Ericson, Ulrika / Sternby, Hanna / Khaw, Kay-Tee / Bradbury, Kathryn E / Huybrechts, Inge / Aune, Dagfinn / Vineis, Paolo / Slimani, Nadia. ·International Agency for Research on Cancer, Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · School of Public Health, Imperial College London, London, United Kingdom. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway. · Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Group of Translational Research in Respiratory Medicine, IRBLleida, Hospital Universitari Arnau de Vilanova and Santa Maria, Lleida, Spain. · Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM-UMR 1149, University Paris 7, France. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, Université Paris-Saclay, France. · Gustave Roussy, Villejuif, France. · German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Germany. · Hellenic Health Foundation, Athens, Greece. · Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy. · Epidemiology and Prevention Unit, IRCCS Foundation National Cancer Institute, Milan, Italy. · Cancer Registry and Histopathology Department, 'Civic-M.P. Arezzo' Hospital, ASP Ragusa, Italy. · Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Dirección de Salud Pública y Adicciones, Gobierno Vasco, Vitoria, Spain. · Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden. · Department of Clinical Pharmacology, Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden. · Diabetes and Cardiovascular disease, Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Sweden. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom. · Bjørknes University College, Oslo, Norway. · IIGM Foundation, Turin, Italy. ·Int J Cancer · Pubmed #30178496.

ABSTRACT: Pancreatic cancer (PC) has an exceptionally low survival rate and primary prevention strategies are limited. Folate plays an important role in one-carbon metabolism and has been associated with the risk of several cancers, but not consistently with PC risk. We aimed to investigate the association between dietary folate intake and PC risk, using the standardised folate database across 10 European countries. A total of 477,206 participants were followed up for 11 years, during which 865 incident primary PC cases were recorded. Folate intake was energy-adjusted using the residual method. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. In multivariable analyses stratified by age, sex, study centre and adjusted for energy intake, smoking status, BMI, educational level, diabetes status, supplement use and dietary fibre intake, we found no significant association between folate intake and PC risk: the HR of PC risk for those in the highest quartile of folate intake (≥353 μg/day) compared to the lowest (<241 μg/day) was 0.81 (95% CI: 0.51, 1.31; p

6 Article Circulating plasma phospholipid fatty acids and risk of pancreatic cancer in a large European cohort. 2018

Matejcic, M / Lesueur, F / Biessy, C / Renault, A L / Mebirouk, N / Yammine, S / Keski-Rahkonen, P / Li, K / Hémon, B / Weiderpass, E / Rebours, V / Boutron-Ruault, M C / Carbonnel, F / Kaaks, R / Katzke, V / Kuhn, T / Boeing, H / Trichopoulou, A / Palli, D / Agnoli, C / Panico, S / Tumino, R / Sacerdote, C / Quirós, J R / Duell, E J / Porta, M / Sánchez, M J / Chirlaque, M D / Barricarte, A / Amiano, P / Ye, W / Peeters, P H / Khaw, K T / Perez-Cornago, A / Key, T J / Bueno-de-Mesquita, H B / Riboli, E / Vineis, P / Romieu, I / Gunter, M J / Chajès, V. ·International Agency for Research on Cancer, Lyon, France. · Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France. · Institut Curie, Paris, France. · PSL University, Paris, France. · Mines ParisTech, Fontainebleau, France. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Public Health Division of Gipuzkoa, BioDonostia Research institute, San Sebastian, Spain. · Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France. · INSERM, Centre for Research in Epidemiology and Population Health, U1018, Health across Generations Team, Institut Gustave Roussy, Villejuif, France. · Université Paris Sud, UMRS, Villejuif, France. · Department of Gastroenterology, Bicêtre University Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin Bicêtre, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Clinical Medicine and Surgery Department, Università degli Studi di Napoli Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, ASP, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy. · Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy. · EPIC Asturias, Public Health Directorate, Asturias, Spain. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Hospital del Mar Research Institute - IMIM, CIBER Epidemiología y Salud Pública (CIBERESP) and Universitat Autònoma de Barcelona, Barcelona, Spain. · Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Institute for Health Research (IdiSNA), Pamplona, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · MRC-PHE Center for Environment and Health, School of Public Health, Imperial College, London, United Kingdom. ·Int J Cancer · Pubmed #30110135.

ABSTRACT: There are both limited and conflicting data on the role of dietary fat and specific fatty acids in the development of pancreatic cancer. In this study, we investigated the association between plasma phospholipid fatty acids and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The fatty acid composition was measured by gas chromatography in plasma samples collected at recruitment from375 incident pancreatic cancer cases and375 matched controls. Associations of specific fatty acids with pancreatic cancer risk were evaluated using multivariable conditional logistic regression models with adjustment for established pancreatic cancer risk factors. Statistically significant inverse associations were found between pancreatic cancer incidence and levels of heptadecanoic acid (OR

7 Article Lifetime and baseline alcohol intakes and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition study. 2018

Naudin, Sabine / Li, Kuanrong / Jaouen, Tristan / Assi, Nada / Kyrø, Cecilie / Tjønneland, Anne / Overvad, Kim / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Védié, Anne-Laure / Boeing, Heiner / Kaaks, Rudolf / Katzke, Verena / Bamia, Christina / Naska, Androniki / Trichopoulou, Antonia / Berrino, Franco / Tagliabue, Giovanna / Palli, Domenico / Panico, Salvatore / Tumino, Rosario / Sacerdote, Carlotta / Peeters, Petra H / Bueno-de-Mesquita, H B As / Weiderpass, Elisabete / Gram, Inger Torhild / Skeie, Guri / Chirlaque, Maria-Dolores / Rodríguez-Barranco, Miguel / Barricarte, Aurelio / Quirós, Jose Ramón / Dorronsoro, Miren / Johansson, Ingegerd / Sund, Malin / Sternby, Hanna / Bradbury, Kathryn E / Wareham, Nick / Riboli, Elio / Gunter, Marc / Brennan, Paul / Duell, Eric J / Ferrari, Pietro. ·Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, University of Paris-Saclay, Villejuif, France. · Institut Gustave Roussy, Villejuif, France. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM U1149, University Paris 7, Paris, France. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Hellenic Health Foundation, Athens, Greece. · Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, WHO Collaborating Center for Nutrition and Health, National and Kapodistrian University of Athens, Athens, Greece. · Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy. · Department of Clinical and Experimental Medicine, University Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, Civic M.P.Arezzo Hospital, Ragusa, Italy, Ragusa, Italy. · Unit of Cancer Epidemiology, Hospital and Center for Cancer Prevention (CPO), Città della Salute e della Scienza University, Turin, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala, Malaysia, Lumpur. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Department of Health and Social Sciences, University of Murcia, Murcia, Spain. · Biosanitary Investigation Institute (IBS) of Granada, University Hospital and University of Granada, Granada, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Navarra Institute for Health Research (IdiSNA), Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Subdirección de Salud Pública de Gipuzkoa, Gobierno Vasco, San Sebastian, Spain. · Department of Odontology, Cariology, Umeå University, Umeå, Sweden. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom. · School of Public Health, Imperial College London, London, United Kingdom. · Nutrition and Epidemiology Group, International Agency for Research on Cancer, Lyon, France. · Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. ·Int J Cancer · Pubmed #29524225.

ABSTRACT: Recent evidence suggested a weak relationship between alcohol consumption and pancreatic cancer (PC) risk. In our study, the association between lifetime and baseline alcohol intakes and the risk of PC was evaluated, including the type of alcoholic beverages and potential interaction with smoking. Within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, 1,283 incident PC (57% women) were diagnosed from 476,106 cancer-free participants, followed up for 14 years. Amounts of lifetime and baseline alcohol were estimated through lifestyle and dietary questionnaires, respectively. Cox proportional hazard models with age as primary time variable were used to estimate PC hazard ratios (HR) and their 95% confidence interval (CI). Alcohol intake was positively associated with PC risk in men. Associations were mainly driven by extreme alcohol levels, with HRs comparing heavy drinkers (>60 g/day) to the reference category (0.1-4.9 g/day) equal to 1.77 (95% CI: 1.06, 2.95) and 1.63 (95% CI: 1.16, 2.29) for lifetime and baseline alcohol, respectively. Baseline alcohol intakes from beer (>40 g/day) and spirits/liquors (>10 g/day) showed HRs equal to 1.58 (95% CI: 1.07, 2.34) and 1.41 (95% CI: 1.03, 1.94), respectively, compared to the reference category (0.1-2.9 g/day). In women, HR estimates did not reach statistically significance. The alcohol and PC risk association was not modified by smoking status. Findings from a large prospective study suggest that baseline and lifetime alcohol intakes were positively associated with PC risk, with more apparent risk estimates for beer and spirits/liquors than wine intake.

8 Article Circulating concentrations of vitamin D in relation to pancreatic cancer risk in European populations. 2018

van Duijnhoven, Fränzel J B / Jenab, Mazda / Hveem, Kristian / Siersema, Peter D / Fedirko, Veronika / Duell, Eric J / Kampman, Ellen / Halfweeg, Anouk / van Kranen, Henk J / van den Ouweland, Jody M W / Weiderpass, Elisabete / Murphy, Neil / Langhammer, Arnulf / Ness-Jensen, Eivind / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Cadeau, Claire / Kvaskoff, Marina / Boutron-Ruault, Marie-Christine / Katzke, Verena A / Kühn, Tilman / Boeing, Heiner / Trichopoulou, Antonia / Kotanidou, Anastasia / Kritikou, Maria / Palli, Domenico / Agnoli, Claudia / Tumino, Rosario / Panico, Salvatore / Matullo, Giuseppe / Peeters, Petra / Brustad, Magritt / Olsen, Karina Standahl / Lasheras, Cristina / Obón-Santacana, Mireia / Sánchez, María-José / Dorronsoro, Miren / Chirlaque, Maria-Dolores / Barricarte, Aurelio / Manjer, Jonas / Almquist, Martin / Renström, Frida / Ye, Weimin / Wareham, Nick / Khaw, Kay-Tee / Bradbury, Kathryn E / Freisling, Heinz / Aune, Dagfinn / Norat, Teresa / Riboli, Elio / Bueno-de-Mesquita, H B As. ·National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands. · International Agency for Research on Cancer (IARC-WHO), Lyon, France. · HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway. · Department of Gastroenterology and Hepatology, University Medical Center Utrecht, The Netherlands. · Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands. · Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Department of Clinical Chemistry, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Cancer Registry of Norway, Institute for Population-based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, F-94805, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece. · Department of Critical Care Medicine and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, (Italy). · Dipartimento di medicina clinica e chirurgia, Federico II university, Naples, Italy. · Department of Medical Sciences, University of Torino, Torino, Italy. · Italian Institute for Genomic Medicine (IIGM/HuGeF), Torino, Italy. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom. · Oviedo University, Asturias, Spain. · Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Spain. · Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Navarra Institute for Health Research (IdiSNA) Pamplona, Spain. · Department of Surgery, Lund University, Skåne University Hospital Malmö, Malmö, Sweden. · Department of Surgery, Endocrine-Sarcoma unit, Skane University Hospital, Lund, Sweden. · Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden. · Department of Biobank Research, Umeå University, Umeå, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. ·Int J Cancer · Pubmed #29114875.

ABSTRACT: Evidence from in vivo, in vitro and ecological studies are suggestive of a protective effect of vitamin D against pancreatic cancer (PC). However, this has not been confirmed by analytical epidemiological studies. We aimed to examine the association between pre-diagnostic circulating vitamin D concentrations and PC incidence in European populations. We conducted a pooled nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Nord-Trøndelag Health Study's second survey (HUNT2) cohorts. In total, 738 primary incident PC cases (EPIC n = 626; HUNT2 n = 112; median follow-up = 6.9 years) were matched to 738 controls. Vitamin D [25(OH)D

9 Article Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. 2017

Duell, Eric J / Lujan-Barroso, Leila / Sala, Núria / Deitz McElyea, Samantha / Overvad, Kim / Tjonneland, Anne / Olsen, Anja / Weiderpass, Elisabete / Busund, Lill-Tove / Moi, Line / Muller, David / Vineis, Paolo / Aune, Dagfinn / Matullo, Giuseppe / Naccarati, Alessio / Panico, Salvatore / Tagliabue, Giovanna / Tumino, Rosario / Palli, Domenico / Kaaks, Rudolf / Katzke, Verena A / Boeing, Heiner / Bueno-de-Mesquita, H B As / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Kotanidou, Anastasia / Travis, Ruth C / Wareham, Nick / Khaw, Kay-Tee / Ramon Quiros, Jose / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, María-Dolores / Ardanaz, Eva / Severi, Gianluca / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Brennan, Paul / Gunter, Marc / Scelo, Ghislaine / Cote, Greg / Sherman, Stuart / Korc, Murray. ·Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway. · Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. · School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom. · Human Genetics Foundation (HuGeF), Turin, Italy. · Department of Medical Sciences, University of Turin, Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P, Arezzo" Hospital, ASP, Ragusa, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany. · Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece. · Department of Epidemiology, Harvard School of Public Health, Boston, MA. · Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Public Health Directorate, Asturias, Spain. · Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada. · CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Basque Regional Health Department, San Sebatian, Spain. · Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, France. · Beaujon Hospital, Pancreatology Unit, Clichy, France. · INSERM, University Paris, France. · International Agency for Research on Cancer (IARC), Lyon, France. · Medical University of South Carolina, Charleston, SC. · Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN. · Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN. ·Int J Cancer · Pubmed #28542740.

ABSTRACT: Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).

10 Article Mediterranean diet and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition cohort. 2017

Molina-Montes, Esther / Sánchez, María-José / Buckland, Genevieve / Bueno-de-Mesquita, H B As / Weiderpass, Elisabete / Amiano, Pilar / Wark, Petra A / Kühn, Tilman / Katzke, Verena / Huerta, José María / Ardanaz, Eva / Quirós, José Ramón / Affret, Aurélie / His, Mathilde / Boutron-Ruault, Marie-Christine / Peeters, Petra H / Ye, Weimin / Sund, Malin / Boeing, Heiner / Iqbal, Khalid / Ohlsson, Bodil / Sonestedt, Emily / Tjønneland, Anne / Petersen, Kristina En / Travis, Ruth C / Skeie, Guri / Agnoli, Claudia / Panico, Salvatore / Palli, Domenico / Tumino, Rosario / Sacerdote, Carlotta / Freisling, Heinz / Huybrechts, Inge / Overvad, Kim / Trichopoulou, Antonia / Bamia, Christina / Vasilopoulou, Effie / Wareham, Nick / Khaw, Kay-Tee / Cross, Amanda J / Ward, Heather A / Riboli, Elio / Duell, Eric J. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. · Andalusian School of Public Health, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Global eHealth Unit, Department of Primary Care and Public Health, The School of Public Health, Imperial College London, London, UK. · Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP Generations and Health Team, INSERM, Villejuif, France. · Gustave Roussy, Villejuif F-94805, France. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Department of Internal Medicine, Skane University Hospital, Malmö, Sweden. · Department of Clinical Sciences, Lund University, Malmö, Sweden. · Danish Cancer Society Research Center, Unit of Diet, Genes and Environment, Copenhagen, Denmark. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Cancer Registry and Histopathology Unit, 'Civic-M.P.Arezzo' Hospital, ASP Ragusa, Ragusa, Italy. · Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France. · Department of Public Health, Section of Epidemiology, Aarhus University, Aarhus, Denmark. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece. · Medical Research Council (MCR), Epidemiology Unit, Cambridge, UK. · University of Cambridge, School of Clinical Medicine, Cambridge, UK. ·Br J Cancer · Pubmed #28170373.

ABSTRACT: BACKGROUND: The Mediterranean diet (MD) has been proposed as a means for cancer prevention, but little evidence has been accrued regarding its potential to prevent pancreatic cancer. We investigated the association between the adherence to the MD and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS: Over half a million participants from 10 European countries were followed up for over 11 years, after which 865 newly diagnosed exocrine pancreatic cancer cases were identified. Adherence to the MD was estimated through an adapted score without the alcohol component (arMED) to discount alcohol-related harmful effects. Cox proportional hazards regression models, stratified by age, sex and centre, and adjusted for energy intake, body mass index, smoking status, alcohol intake and diabetes status at recruitment, were used to estimate hazard ratios (HRs) associated with pancreatic cancer and their corresponding 95% confidence intervals (CIs). RESULTS: Adherence to the arMED score was not associated with risk of pancreatic cancer (HR high vs low adherence=0.99; 95% CI: 0.77-1.26, and HR per increments of two units in adherence to arMED=1.00; 95% CI: 0.94-1.06). There was no convincing evidence for heterogeneity by smoking status, body mass index, diabetes or European region. There was also no evidence of significant associations in analyses involving microscopically confirmed cases, plausible reporters of energy intake or other definitions of the MD pattern. CONCLUSIONS: A high adherence to the MD is not associated with pancreatic cancer risk in the EPIC study.

11 Article Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: A nested case-control study. 2017

Huang, Jiaqi / Zagai, Ulrika / Hallmans, Göran / Nyrén, Olof / Engstrand, Lars / Stolzenberg-Solomon, Rachael / Duell, Eric J / Overvad, Kim / Katzke, Verena A / Kaaks, Rudolf / Jenab, Mazda / Park, Jin Young / Murillo, Raul / Trichopoulou, Antonia / Lagiou, Pagona / Bamia, Christina / Bradbury, Kathryn E / Riboli, Elio / Aune, Dagfinn / Tsilidis, Konstantinos K / Capellá, Gabriel / Agudo, Antonio / Krogh, Vittorio / Palli, Domenico / Panico, Salvatore / Weiderpass, Elisabete / Tjønneland, Anne / Olsen, Anja / Martínez, Begoña / Redondo-Sanchez, Daniel / Chirlaque, Maria-Dolores / Hm Peeters, Petra / Regnér, Sara / Lindkvist, Björn / Naccarati, Alessio / Ardanaz, Eva / Larrañaga, Nerea / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Barré, Amélie / Bueno-de-Mesquita, H B As / Ye, Weimin. ·Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden. · Department of Public Health and Clinical Nutrition, Umeå University, Umeå, Sweden. · Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. · Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Prevention and Implementation Group, Section of Early Detection and Prevention, Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. · Translational Research Laboratory, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain. · Unit of Nutrition and Cancer. Cancer Epidemiology Research Program. Catalan Institute of Oncology-IDIBELL. L'Hospitalet de Llobregat, Barcelona, Spain. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Dipartimento di medicina clinica e chirurgia Federico II, Naples, Italy. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, Granada, Spain. · CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs, Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden. · Molecular and Genetic Epidemiology Unit, Human Genetics Foundation, Turin, Italy. · Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Spain. · Hormones and Women's Health Team, INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Villejuif, F-94805, France. · Université Paris Sud, UMRS 1018, Villejuif, F-94805, France. · Institut Gustave Roussy, Villejuif, F-94805, France. · Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France. · Université Paris Sud and Gastroenterology Unit, Hôpitaux Universitaires Paris Sud, CHU de Bicêtre, AP-HP, Le Kremlin Bicêtre, France. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · The Medical Biobank at Umeå University, Umeå, Sweden. ·Int J Cancer · Pubmed #28032715.

ABSTRACT: The association between H. pylori infection and pancreatic cancer risk remains controversial. We conducted a nested case-control study with 448 pancreatic cancer cases and their individually matched control subjects, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, to determine whether there was an altered pancreatic cancer risk associated with H. pylori infection and chronic corpus atrophic gastritis. Conditional logistic regression models were applied to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs), adjusted for matching factors and other potential confounders. Our results showed that pancreatic cancer risk was neither associated with H. pylori seropositivity (OR = 0.96; 95% CI: 0.70, 1.31) nor CagA seropositivity (OR = 1.07; 95% CI: 0.77, 1.48). We also did not find any excess risk among individuals seropositive for H. pylori but seronegative for CagA, compared with the group seronegative for both antibodies (OR = 0.94; 95% CI: 0.63, 1.38). However, we found that chronic corpus atrophic gastritis was non-significantly associated with an increased pancreatic cancer risk (OR = 1.35; 95% CI: 0.77, 2.37), and although based on small numbers, the excess risk was particularly marked among individuals seronegative for both H. pylori and CagA (OR = 5.66; 95% CI: 1.59, 20.19, p value for interaction < 0.01). Our findings provided evidence supporting the null association between H. pylori infection and pancreatic cancer risk in western European populations. However, the suggested association between chronic corpus atrophic gastritis and pancreatic cancer risk warrants independent verification in future studies, and, if confirmed, further studies on the underlying mechanisms.

12 Article Sweet-beverage consumption and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). 2016

Navarrete-Muñoz, Eva M / Wark, Petra A / Romaguera, Dora / Bhoo-Pathy, Nirmala / Michaud, Dominique / Molina-Montes, Esther / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Boutron-Ruault, Marie-Christine / Clavel-Chapelon, Françoise / Fagherazzi, Guy / Katzke, Verena A / Kühn, Tilman / Steffen, Annika / Trichopoulou, Antonia / Klinaki, Eleni / Papatesta, Eleni-Maria / Masala, Giovanna / Krogh, Vittorio / Tumino, Rosario / Naccarati, Alessio / Mattiello, Amalia / Peeters, Petra H / Rylander, Charlotta / Parr, Christine L / Skeie, Guri / Weiderpass, Elisabete / Quirós, J Ramón / Duell, Eric J / Dorronsoro, Miren / Huerta, José María / Ardanaz, Eva / Wareham, Nick / Khaw, Kay-Tee / Travis, Ruth C / Key, Tim / Stepien, Magdalena / Freisling, Heinz / Riboli, Elio / Bueno-de-Mesquita, H Bas. ·Department of Public Health, Faculty of Medicine, Miguel Hernández University, Alicante, Spain; The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; · Global eHealth Unit, Department of Primary Care and Public Health. · Department of Epidemiology and Biostatistics, and The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain; Medical Research Institute of Palma, University Hospital Son Espases, Palma de Mallorca, Spain; mariaadoracion.romaguera@ssib.es. · Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; · Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Andalusian School of Public Health. Biomedical Research Institute of Granada; University Hospital of Granada/Granada University, Granada, Spain; · Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen Ø, Denmark; · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark; · Centre for Research in Epidemiology and Population Health, U1018, Nutrition, Hormones and Women's Health team, National Institute for Health and Medical Research, Villejuif, France; UMRS 1018, Université Paris Sud, Villejuif, France; Institut Gustave Roussy, Villejuif, France; · Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany; · Hellenic Health Foundation, Athens, Greece; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; · Hellenic Health Foundation, Athens, Greece; · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy; · Epidemiology and Prevention Unit. Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy; · Human Genetics Foundation,Torino, Molecular and Genetic Epidemiology Unit, Torino, Italy; · Dipartamento di Medicina Clinica e Chirurgia, Federico II University of Naples, Naples, Italy; · MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands; · Department of Community Medicine, University of Tromsø-the Arctic University of Norway, Tromsø, Norway; · Department of Chronic Diseases, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; · Department of Community Medicine, University of Tromsø-the Arctic University of Norway, Tromsø, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Samfundet Folkhälsan, Helsinki, Finland; · Public Health Directorate, Asturias, Spain; · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Public Health Direction Biodonostia Basque Regional Health Department, San Sebastian, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Navarre Public Health Institute, Pamplona, Spain; · Medical Research Council Epidemiology Unit. · Department of Public Health and Primary Care, and Clinical Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; · Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France; · Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, Netherlands; and. · Department of Epidemiology and Biostatistics, and. · Department of Epidemiology and Biostatistics, and Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, Netherlands; and Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, Netherlands. ·Am J Clin Nutr · Pubmed #27510540.

ABSTRACT: BACKGROUND: The consumption of sweet beverages has been associated with greater risk of type 2 diabetes and obesity, which may be involved in the development of pancreatic cancer. Therefore, it has been hypothesized that sweet beverages may increase pancreatic cancer risk as well. OBJECTIVE: We examined the association between sweet-beverage consumption (including total, sugar-sweetened, and artificially sweetened soft drink and juice and nectar consumption) and pancreatic cancer risk. DESIGN: The study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. A total of 477,199 participants (70.2% women) with a mean age of 51 y at baseline were included, and 865 exocrine pancreatic cancers were diagnosed after a median follow-up of 11.60 y (IQR: 10.10-12.60 y). Sweet-beverage consumption was assessed with the use of validated dietary questionnaires at baseline. HRs and 95% CIs were obtained with the use of multivariable Cox regression models that were stratified by age, sex, and center and adjusted for educational level, physical activity, smoking status, and alcohol consumption. Associations with total soft-drink consumption were adjusted for juice and nectar consumption and vice versa. RESULTS: Total soft-drink consumption (HR per 100 g/d: 1.03; 95% CI: 0.99, 1.07), sugar-sweetened soft-drink consumption (HR per 100 g/d: 1.02; 95% CI: 0.97, 1.08), and artificially sweetened soft-drink consumption (HR per 100 g/d: 1.04; 95% CI: 0.98, 1.10) were not associated with pancreatic cancer risk. Juice and nectar consumption was inversely associated with pancreatic cancer risk (HR per 100 g/d: 0.91; 95% CI: 0.84, 0.99); this association remained statistically significant after adjustment for body size, type 2 diabetes, and energy intake. CONCLUSIONS: Soft-drink consumption does not seem to be associated with pancreatic cancer risk. Juice and nectar consumption might be associated with a modest decreased pancreatic cancer risk. Additional studies with specific information on juice and nectar subtypes are warranted to clarify these results.

13 Article Flavonoid and lignan intake and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2016

Molina-Montes, Esther / Sánchez, María-José / Zamora-Ros, Raul / Bueno-de-Mesquita, H B As / Wark, Petra A / Obon-Santacana, Mireia / Kühn, Tilman / Katzke, Verena / Travis, Ruth C / Ye, Weimin / Sund, Malin / Naccarati, Alessio / Mattiello, Amalia / Krogh, Vittorio / Martorana, Caterina / Masala, Giovanna / Amiano, Pilar / Huerta, José-María / Barricarte, Aurelio / Quirós, José-Ramón / Weiderpass, Elisabete / Angell Åsli, Lene / Skeie, Guri / Ericson, Ulrika / Sonestedt, Emily / Peeters, Petra H / Romieu, Isabelle / Scalbert, Augustin / Overvad, Kim / Clemens, Matthias / Boeing, Heiner / Trichopoulou, Antonia / Peppa, Eleni / Vidalis, Pavlos / Khaw, Kay-Tee / Wareham, Nick / Olsen, Anja / Tjønneland, Anne / Boutroun-Rualt, Marie-Christine / Clavel-Chapelon, Françoise / Cross, Amanda J / Lu, Yunxia / Riboli, Elio / Duell, Eric J. ·Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, GRANADA, Hospitales Universitarios De Granada/Universidad De Granada, Granada, Spain. · CIBERESP, CIBER Epidemiología Y Salud Pública, Spain. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, the School of Public Health, Imperial College London, London, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Global eHealth Unit, Department of Primary Care and Public Health, the School of Public Health, Imperial College London, London, United Kingdom. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Molecular and Genetic Epidemiology Unit, HuGeF-Human Genetics Foundation, Torino, Italy. · Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. · Cancer Registry ASP, Ragusa, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Public Health Institute of Navarra, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, the Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece. · University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Epidemiology Unit, Medical Research Council, Cambridge, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Inserm, CESP Centre for Research in Epidemiology and Population Health, France. ·Int J Cancer · Pubmed #27184434.

ABSTRACT: Despite the potential cancer preventive effects of flavonoids and lignans, their ability to reduce pancreatic cancer risk has not been demonstrated in epidemiological studies. Our aim was to examine the association between dietary intakes of flavonoids and lignans and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A total of 865 exocrine pancreatic cancer cases occurred after 11.3 years of follow-up of 477,309 cohort members. Dietary flavonoid and lignan intake was estimated through validated dietary questionnaires and the US Department of Agriculture (USDA) and Phenol Explorer databases. Hazard ratios (HR) and 95% confidence intervals (CIs) were calculated using age, sex and center-stratified Cox proportional hazards models, adjusted for energy intake, body mass index (BMI), smoking, alcohol and diabetes status. Our results showed that neither overall dietary intake of flavonoids nor of lignans were associated with pancreatic cancer risk (multivariable-adjusted HR for a doubling of intake = 1.03, 95% CI: 0.95-1.11 and 1.02; 95% CI: 0.89-1.17, respectively). Statistically significant associations were also not observed by flavonoid subclasses. An inverse association between intake of flavanones and pancreatic cancer risk was apparent, without reaching statistical significance, in microscopically confirmed cases (HR for a doubling of intake = 0.96, 95% CI: 0.91-1.00). In conclusion, we did not observe an association between intake of flavonoids, flavonoid subclasses or lignans and pancreatic cancer risk in the EPIC cohort.

14 Article Plasma carotenoids, vitamin C, retinol and tocopherols levels and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition: a nested case-control study: plasma micronutrients and pancreatic cancer risk. 2015

Jeurnink, Suzanne M / Ros, Martine M / Leenders, Max / van Duijnhoven, Franzel J B / Siersema, Peter D / Jansen, Eugene H J M / van Gils, Carla H / Bakker, Marije F / Overvad, Kim / Roswall, Nina / Tjønneland, Anne / Boutron-Ruault, Marie-Christine / Racine, Antoine / Cadeau, Claire / Grote, Verena / Kaaks, Rudolf / Aleksandrova, Krasimira / Boeing, Heiner / Trichopoulou, Antonia / Benetou, Vasiliki / Valanou, Elisavet / Palli, Domenico / Krogh, Vittorio / Vineis, Paolo / Tumino, Rosario / Mattiello, Amalia / Weiderpass, Elisabete / Skeie, Guri / Castaño, José María Huerta / Duell, Eric J / Barricarte, Aurelio / Molina-Montes, Esther / Argüelles, Marcial / Dorronsoro, Mire / Johansen, Dorthe / Lindkvist, Björn / Sund, Malin / Crowe, Francesca L / Khaw, Kay-Tee / Jenab, Mazda / Fedirko, Veronika / Riboli, E / Bueno-de-Mesquita, H B. ·Department of Gastroenterology and Hepatology, University Medical Center Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. ·Int J Cancer · Pubmed #25175624.

ABSTRACT: Evidence of a protective effect of several antioxidants and other nutrients on pancreatic cancer risk is inconsistent. The aim of this study was to investigate the association for prediagnostic plasma levels of carotenoids, vitamin C, retinol and tocopherols with risk of pancreatic cancer in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). 446 incident exocrine pancreatic cancer cases were matched to 446 controls by age at blood collection, study center, sex, date and time of blood collection, fasting status and hormone use. Plasma carotenoids (α- and β-carotene, lycopene, β-cryptoxanthin, canthaxanthin, zeaxanthin and lutein), α- and γ-tocopherol and retinol were measured by reverse phase high-performance liquid chromatography and plasma vitamin C by a colorimetric assay. Incidence rate ratios (IRRs) with 95% confidence intervals (95%CIs) for pancreatic cancer risk were estimated using a conditional logistic regression analysis, adjusted for smoking status, smoking duration and intensity, waist circumference, cotinine levels and diabetes status. Inverse associations with pancreatic cancer risk were found for plasma β-carotene (IRR highest vs. lowest quartile 0.52, 95%CI 0.31-0.88, p for trend = 0.02), zeaxanthin (IRR highest vs. lowest quartile 0.53, 95%CI 0.30-0.94, p for trend = 0.06) and α-tocopherol (IRR highest vs. lowest quartile 0.62, 95%CI 0.39-0.99, p for trend = 0.08. For α- and β-carotene, lutein, sum of carotenoids and γ-tocopherol, heterogeneity between geographical regions was observed. In conclusion, our results show that higher plasma concentrations of β-carotene, zeaxanthin and α-tocopherol may be inversely associated with risk of pancreatic cancer, but further studies are warranted.

15 Article Leukocyte telomere length in relation to pancreatic cancer risk: a prospective study. 2014

Campa, Daniele / Mergarten, Björn / De Vivo, Immaculata / Boutron-Ruault, Marie-Christine / Racine, Antoine / Severi, Gianluca / Nieters, Alexandra / Katzke, Verena A / Trichopoulou, Antonia / Yiannakouris, Nikos / Trichopoulos, Dimitrios / Boeing, Heiner / Quirós, J Ramón / Duell, Eric J / Molina-Montes, Esther / Huerta, José María / Ardanaz, Eva / Dorronsoro, Miren / Khaw, Kay-Tee / Wareham, Nicholas / Travis, Ruth C / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Vineis, Paolo / Riboli, Elio / Siddiq, Afshan / Bueno-de-Mesquita, H B / Peeters, Petra H / Nilsson, Peter M / Sund, Malin / Ye, Weimin / Lund, Eiliv / Jareid, Mie / Weiderpass, Elisabete / Duarte-Salles, Talita / Kong, So Yeon / Stepien, Magdalena / Canzian, Federico / Kaaks, Rudolf. ·Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts. · Institut National de la Santé et de la Recherche Médicale (INSERM), Centre for research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones, and Women's Health team, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. IGR, Villejuif, France. · Human Genetics Foundation (HuGeF), Torino, Italy. · Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany. · Hellenic Health Foundation, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. · Hellenic Health Foundation, Athens, Greece. Harokopio University of Athens, Greece. · Hellenic Health Foundation, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition, Environment, and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria de Granada (Granada.ibs), Granada, Spain. CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Navarre Public Health Institute, Pamplona, Spain. · Public Health Direction and Biodonostia-Ciberesp Basque Regional Health Department, San Sebastian, Spain. · University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom. · Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute, ISPO, Florence, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Dipartimento Di Medicina Clinica e Chirurgia Federico II University, Naples, Italy. · Division of Epidemiology, Public Health and Primary Care, Imperial College, London, United Kingdom. · Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom. · National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. The School of Public Health, Imperial College London, London, United Kingdom. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands. · Lund University, Department of Clinical Sciences, Skåne University Hospital, Malmö Sweden. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway. · Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Samfundet Folkhälsan, Helsinki, Finland. · International Agency for Research on Cancer (IARC-WHO), Lyon, France. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. r.kaaks@dkfz.de. ·Cancer Epidemiol Biomarkers Prev · Pubmed #25103821.

ABSTRACT: BACKGROUND: Several studies have examined leukocyte telomere length (LTL) as a possible predictor for cancer at various organ sites. The hypothesis originally motivating many of these studies was that shorter telomeres would be associated with an increase in cancer risk; the results of epidemiologic studies have been inconsistent, however, and suggested positive, negative, or null associations. Two studies have addressed the association of LTL in relation to pancreatic cancer risk and the results are contrasting. METHODS: We measured LTL in a prospective study of 331 pancreatic cancer cases and 331 controls in the context of the European Prospective Investigation into Cancer and Nutrition (EPIC). RESULTS: We observed that the mean LTL was higher in cases (0.59 ± 0.20) than in controls (0.57 ± 0.17), although this difference was not statistically significant (P = 0.07), and a basic logistic regression model showed no association of LTL with pancreas cancer risk. When adjusting for levels of HbA1c and C-peptide, however, there was a weakly positive association between longer LTL and pancreatic cancer risk [OR, 1.13; 95% confidence interval (CI), 1.01-1.27]. Additional analyses by cubic spline regression suggested a possible nonlinear relationship between LTL and pancreatic cancer risk (P = 0.022), with a statistically nonsignificant increase in risk at very low LTL, as well as a significant increase at high LTL. CONCLUSION: Taken together, the results from our study do not support LTL as a uniform and strong predictor of pancreatic cancer. IMPACT: The results of this article can provide insights into telomere dynamics and highlight the complex relationship between LTL and pancreatic cancer risk.

16 Article Dietary intake of acrylamide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. 2013

Obón-Santacana, M / Slimani, N / Lujan-Barroso, L / Travier, N / Hallmans, G / Freisling, H / Ferrari, P / Boutron-Ruault, M C / Racine, A / Clavel, F / Saieva, C / Pala, V / Tumino, R / Mattiello, A / Vineis, P / Argüelles, M / Ardanaz, E / Amiano, P / Navarro, C / Sánchez, M J / Molina Montes, E / Key, T / Khaw, K-T / Wareham, N / Peeters, P H / Trichopoulou, A / Bamia, C / Trichopoulos, D / Boeing, H / Kaaks, R / Katzke, V / Ye, W / Sund, M / Ericson, U / Wirfält, E / Overvad, K / Tjønneland, A / Olsen, A / Skeie, G / Åsli, L A / Weiderpass, E / Riboli, E / Bueno-de-Mesquita, H B / Duell, E J. ·Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. ·Ann Oncol · Pubmed #23857962.

ABSTRACT: BACKGROUND: In 1994, acrylamide (AA) was classified as a probable human carcinogen by the International Agency for Research on Cancer. In 2002, AA was discovered at relatively high concentrations in some starchy, plant-based foods cooked at high temperatures. PATIENTS AND METHODS: A prospective analysis was conducted to evaluate the association between the dietary intake of AA and ductal adenocarcinoma of the exocrine pancreatic cancer (PC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort using Cox regression modeling. EPIC includes >500,000 men and women aged 35-75 at enrollment from 10 European countries. AA intake was estimated for each participant by combining questionnaire-based food consumption data with a harmonized AA database derived from the EU monitoring database of AA levels in foods, and evaluated in quintiles and continuously. RESULTS: After a mean follow-up of 11 years, 865 first incident adenocarcinomas of the exocrine pancreas were observed and included in the present analysis. At baseline, the mean dietary AA intake in EPIC was 26.22 µg/day. No overall association was found between continuous or quintiles of dietary AA intake and PC risk in EPIC (HR:0.95, 95%CI:0.89-1.01 per 10 µg/day). There was no effect measure modification by smoking status, sex, diabetes, alcohol intake or geographic region. However, there was an inverse association (HR: 0.73, 95% CI: 0.61-0.88 per 10 µg/day) between AA intake and PC risk in obese persons as defined using the body mass index (BMI, ≥ 30 kg/m(2)), but not when body fatness was defined using waist and hip circumference or their ratio. CONCLUSIONS: Dietary intake of AA was not associated with an increased risk of PC in the EPIC cohort.

17 Article Intake of coffee, decaffeinated coffee, or tea does not affect risk for pancreatic cancer: results from the European Prospective Investigation into Nutrition and Cancer Study. 2013

Bhoo-Pathy, Nirmala / Uiterwaal, Cuno S P M / Dik, Vincent K / Jeurnink, Suzanne M / Bech, Bodil H / Overvad, Kim / Halkjær, Jytte / Tjønneland, Anne / Boutron-Ruault, Marie-Christine / Fagherazzi, Guy / Racine, Antoine / Katzke, Verena A / Li, Kuanrong / Boeing, Heiner / Floegel, Anna / Androulidaki, Anna / Bamia, Christina / Trichopoulou, Antonia / Masala, Giovanna / Panico, Salvatore / Crosignani, Paolo / Tumino, Rosario / Vineis, Paolo / Peeters, Petra H M / Gavrilyuk, Oxana / Skeie, Guri / Weiderpass, Elisabete / Duell, Eric J / Arguelles, Marcial / Molina-Montes, Esther / Navarro, Carmen / Ardanaz, Eva / Dorronsoro, Miren / Lindkvist, Björn / Wallström, Peter / Sund, Malin / Ye, Weimin / Khaw, Kay-Tee / Wareham, Nick / Key, Timothy J / Travis, Ruth C / Duarte-Salles, Talita / Freisling, Heinz / Licaj, Idlir / Gallo, Valentina / Michaud, Dominique S / Riboli, Elio / Bueno-De-Mesquita, H Bas. ·Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; National Clinical Research Centre, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia. ·Clin Gastroenterol Hepatol · Pubmed #23756220.

ABSTRACT: BACKGROUND & AIMS: Few modifiable risk factors have been implicated in the etiology of pancreatic cancer. There is little evidence for the effects of caffeinated coffee, decaffeinated coffee, or tea intake on risk of pancreatic cancer. We investigated the association of total coffee, caffeinated coffee, decaffeinated coffee, and tea consumption with risk of pancreatic cancer. METHODS: This study was conducted within the European Prospective Investigation into Nutrition and Cancer cohort, comprising male and female participants from 10 European countries. Between 1992 and 2000, there were 477,312 participants without cancer who completed a dietary questionnaire and were followed up to determine pancreatic cancer incidence. Coffee and tea intake was calibrated with a 24-hour dietary recall. Adjusted hazard ratios (HRs) were computed using multivariable Cox regression. RESULTS: During a mean follow-up period of 11.6 y, 865 first incidences of pancreatic cancers were reported. When divided into fourths, neither total intake of coffee (HR, 1.03; 95% confidence interval [CI], 0.83-1.27; high vs low intake), decaffeinated coffee (HR, 1.12; 95% CI, 0.76-1.63; high vs low intake), nor tea were associated with risk of pancreatic cancer (HR, 1.22, 95% CI, 0.95-1.56; high vs low intake). Moderately low intake of caffeinated coffee was associated with an increased risk of pancreatic cancer (HR, 1.33; 95% CI, 1.02-1.74), compared with low intake. However, no graded dose response was observed, and the association attenuated after restriction to histologically confirmed pancreatic cancers. CONCLUSIONS: Based on an analysis of data from the European Prospective Investigation into Nutrition and Cancer cohort, total coffee, decaffeinated coffee, and tea consumption are not related to the risk of pancreatic cancer.

18 Article Menstrual and reproductive factors in women, genetic variation in CYP17A1, and pancreatic cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. 2013

Duell, Eric J / Travier, Noémie / Lujan-Barroso, Leila / Dossus, Laure / Boutron-Ruault, Marie-Christine / Clavel-Chapelon, Françoise / Tumino, Rosario / Masala, Giovanna / Krogh, Vittorio / Panico, Salvatore / Ricceri, Fulvio / Redondo, Maria Luisa / Dorronsoro, Miren / Molina-Montes, Esther / Huerta, José M / Barricarte, Aurelio / Khaw, Kay-Tee / Wareham, Nick J / Allen, Naomi E / Travis, Ruth / Siersema, Peter D / Peeters, Petra H M / Trichopoulou, Antonia / Fragogeorgi, Eirini / Oikonomou, Eleni / Boeing, Heiner / Schuetze, Madlen / Canzian, Federico / Lukanova, Annekatrin / Tjønneland, Anne / Roswall, Nina / Overvad, Kim / Weiderpass, Elisabete / Gram, Inger Torhild / Lund, Eiliv / Lindkvist, Björn / Johansen, Dorthe / Ye, Weimin / Sund, Malin / Fedirko, Veronika / Jenab, Mazda / Michaud, Dominique S / Riboli, Elio / Bueno-de-Mesquita, H Bas. ·Unit of Nutrition, Environment and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. eduell@iconcologia.net ·Int J Cancer · Pubmed #23015357.

ABSTRACT: Menstrual and reproductive factors and exogenous hormone use have been investigated as pancreatic cancer risk factors in case-control and cohort studies, but results have been inconsistent. We conducted a prospective examination of menstrual and reproductive factors, exogenous hormone use and pancreatic cancer risk (based on 304 cases) in 328,610 women from the EPIC cohort. Then, in a case-control study nested within the EPIC cohort, we examined 12 single nucleotide polymorphisms (SNPs) in CYP17A1 (an essential gene in sex steroid metabolism) for association with pancreatic cancer in women and men (324 cases and 353 controls). Of all factors analyzed, only younger age at menarche (<12 vs. 13 years) was moderately associated with an increased risk of pancreatic cancer in the full cohort; however, this result was marginally significant (HR = 1.44; 95% CI = 0.99-2.10). CYP17A1 rs619824 was associated with HRT use (p value = 0.037) in control women; however, none of the SNPs alone, in combination, or as haplotypes were associated with pancreatic cancer risk. In conclusion, with the possible exception of an early age of menarche, none of the menstrual and reproductive factors, and none of the 12 common genetic variants we evaluated at the CYP17A1 locus makes a substantial contribution to pancreatic cancer susceptibility in the EPIC cohort.

19 Article Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. 2013

Michaud, Dominique S / Izard, Jacques / Wilhelm-Benartzi, Charlotte S / You, Doo-Ho / Grote, Verena A / Tjønneland, Anne / Dahm, Christina C / Overvad, Kim / Jenab, Mazda / Fedirko, Veronika / Boutron-Ruault, Marie Christine / Clavel-Chapelon, Françoise / Racine, Antoine / Kaaks, Rudolf / Boeing, Heiner / Foerster, Jana / Trichopoulou, Antonia / Lagiou, Pagona / Trichopoulos, Dimitrios / Sacerdote, Carlotta / Sieri, Sabina / Palli, Domenico / Tumino, Rosario / Panico, Salvatore / Siersema, Peter D / Peeters, Petra H M / Lund, Eiliv / Barricarte, Aurelio / Huerta, José-María / Molina-Montes, Esther / Dorronsoro, Miren / Quirós, J Ramón / Duell, Eric J / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Khaw, Kay-Tee / Wareham, Nick / Travis, Ruth C / Vineis, Paolo / Bueno-de-Mesquita, H Bas / Riboli, Elio. ·Department of Epidemiology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA. ·Gut · Pubmed #22990306.

ABSTRACT: OBJECTIVE: Examine the relationship between antibodies to 25 oral bacteria and pancreatic cancer risk in a prospective cohort study. DESIGN: We measured antibodies to oral bacteria in prediagnosis blood samples from 405 pancreatic cancer cases and 416 matched controls, nested within the European Prospective Investigation into Cancer and Nutrition study. Analyses were conducted using conditional logistic regression and additionally adjusted for smoking status and body mass index. RESULTS: Individuals with high levels of antibodies against Porphyromonas gingivalis ATTC 53978, a pathogenic periodontal bacteria, had a twofold higher risk of pancreatic cancer than individuals with lower levels of these antibodies (OR 2.14; 95% CI 1.05 to 4.36; >200 ng/ml vs ≤200 ng/ml). To explore the association with commensal (non-pathogenic) oral bacteria, we performed a cluster analysis and identified two groups of individuals, based on their antibody profiles. A cluster with overall higher levels of antibodies had a 45% lower risk of pancreatic cancer than a cluster with overall lower levels of antibodies (OR 0.55; 95% CI 0.36 to 0.83). CONCLUSIONS: Periodontal disease might increase the risk for pancreatic cancer. Moreover, increased levels of antibodies against specific commensal oral bacteria, which can inhibit growth of pathogenic bacteria, might reduce the risk of pancreatic cancer. Studies are needed to determine whether oral bacteria have direct effects on pancreatic cancer pathogenesis or serve as markers of the immune response.

20 Article Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. 2013

Rohrmann, Sabine / Linseisen, Jakob / Nöthlings, Ute / Overvad, Kim / Egeberg, Rikke / Tjønneland, Anne / Boutron-Ruault, Marie Christine / Clavel-Chapelon, Françoise / Cottet, Vanessa / Pala, Valeria / Tumino, Rosario / Palli, Domenico / Panico, Salvatore / Vineis, Paolo / Boeing, Heiner / Pischon, Tobias / Grote, Verena / Teucher, Birigit / Khaw, Kay-Tee / Wareham, Nicholas J / Crowe, Francesca L / Goufa, Ioulia / Orfanos, Philippos / Trichopoulou, Antonia / Jeurnink, Suzanne M / Siersema, Peter D / Peeters, Petra H M / Brustad, Magritt / Engeset, Dagrun / Skeie, Guri / Duell, Eric J / Amiano, Pilar / Barricarte, Aurelio / Molina-Montes, Esther / Rodríguez, Laudina / Tormo, María-José / Sund, Malin / Ye, Weimin / Lindkvist, Björn / Johansen, Dorthe / Ferrari, Pietro / Jenab, Mazda / Slimani, Nadia / Ward, Heather / Riboli, Elio / Norat, Teresa / Bueno-de-Mesquita, H Bas. ·Division of Cancer Epidemiology and Prevention, Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland. sabine.rohrmann@ifspm.uzh.ch ·Int J Cancer · Pubmed #22610753.

ABSTRACT: Pancreatic cancer is the fourth most common cause of cancer death worldwide with large geographical variation, which implies the contribution of diet and lifestyle in its etiology. We examined the association of meat and fish consumption with risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). A total of 477,202 EPIC participants from 10 European countries recruited between 1992 and 2000 were included in our analysis. Until 2008, 865 nonendocrine pancreatic cancer cases have been observed. Calibrated relative risks (RRs) and 95% confidence intervals (CIs) were computed using multivariable-adjusted Cox hazard regression models. The consumption of red meat (RR per 50 g increase per day = 1.03, 95% CI = 0.93-1.14) and processed meat (RR per 50 g increase per day = 0.93, 95% CI = 0.71-1.23) were not associated with an increased pancreatic cancer risk. Poultry consumption tended to be associated with an increased pancreatic cancer risk (RR per 50 g increase per day = 1.72, 95% CI = 1.04-2.84); however, there was no association with fish consumption (RR per 50 g increase per day = 1.22, 95% CI = 0.92-1.62). Our results do not support the conclusion of the World Cancer Research Fund that red or processed meat consumption may possibly increase the risk of pancreatic cancer. The positive association of poultry consumption with pancreatic cancer might be a chance finding as it contradicts most previous findings.

21 Article Inflammation marker and risk of pancreatic cancer: a nested case-control study within the EPIC cohort. 2012

Grote, V A / Kaaks, R / Nieters, A / Tjønneland, A / Halkjær, J / Overvad, K / Skjelbo Nielsen, M R / Boutron-Ruault, M C / Clavel-Chapelon, F / Racine, A / Teucher, B / Becker, S / Pischon, T / Boeing, H / Trichopoulou, A / Cassapa, C / Stratigakou, V / Palli, D / Krogh, V / Tumino, R / Vineis, P / Panico, S / Rodríguez, L / Duell, E J / Sánchez, M-J / Dorronsoro, M / Navarro, C / Gurrea, A B / Siersema, P D / Peeters, P H M / Ye, W / Sund, M / Lindkvist, B / Johansen, D / Khaw, K-T / Wareham, N / Allen, N E / Travis, R C / Fedirko, V / Jenab, M / Michaud, D S / Chuang, S-C / Romaguera, D / Bueno-de-Mesquita, H B / Rohrmann, S. ·Division of Cancer Epidemiology (c020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany. ·Br J Cancer · Pubmed #22617158.

ABSTRACT: BACKGROUND: Established risk factors for pancreatic cancer include smoking, long-standing diabetes, high body fatness, and chronic pancreatitis, all of which can be characterised by aspects of inflammatory processes. However, prospective studies investigating the relation between inflammatory markers and pancreatic cancer risk are scarce. METHODS: We conducted a nested case-control study within the European Prospective Investigation into Cancer and Nutrition, measuring prediagnostic blood levels of C-reactive protein (CRP), interleukin-6 (IL-6), and soluble receptors of tumour necrosis factor-α (sTNF-R1, R2) in 455 pancreatic cancer cases and 455 matched controls. Odds ratios (ORs) were estimated using conditional logistic regression models. RESULTS: None of the inflammatory markers were significantly associated with risk of pancreatic cancer overall, although a borderline significant association was observed for higher circulating sTNF-R2 (crude OR=1.52 (95% confidence interval (CI) 0.97-2.39), highest vs lowest quartile). In women, however, higher sTNF-R1 levels were significantly associated with risk of pancreatic cancer (crude OR=1.97 (95% CI 1.02-3.79)). For sTNF-R2, risk associations seemed to be stronger for diabetic individuals and those with a higher BMI. CONCLUSION: Prospectively, CRP and IL-6 do not seem to have a role in our study with respect to risk of pancreatic cancer, whereas sTNF-R1 seemed to be a risk factor in women and sTNF-R2 might be a mediator in the risk relationship between overweight and diabetes with pancreatic cancer. Further large prospective studies are needed to clarify the role of proinflammatory proteins and cytokines in the pathogenesis of exocrine pancreatic cancer.

22 Article Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2012

Molina-Montes, Esther / Wark, Petra A / Sánchez, María-José / Norat, Teresa / Jakszyn, Paula / Luján-Barroso, Leila / Michaud, Dominique S / Crowe, Francesca / Allen, Naomi / Khaw, Kay-Tee / Wareham, Nicholas / Trichopoulou, Antonia / Adarakis, George / Katarachia, Helen / Skeie, Guri / Henningsen, Maria / Broderstad, Ann Ragnhild / Berrino, Franco / Tumino, Rosario / Palli, Domenico / Mattiello, Amalia / Vineis, Paolo / Amiano, Pilar / Barricarte, Aurelio / Huerta, José-María / Duell, Eric J / Quirós, José-Ramón / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Overvad, Kim / Tjønneland, Anne / Roswall, Nina / Li, Kuanrong / Grote, Verena A / Steffen, Annika / Boeing, Heiner / Racine, Antoine / Boutron-Ruault, Marie-Christine / Carbonnel, Franck / Peeters, Petra H M / Siersema, Peter D / Fedirko, Veronika / Jenab, Mazda / Riboli, Elio / Bueno-de-Mesquita, Bas. ·Andalusian School of Public Health. Granada Cancer Registry, Spain. ·Int J Cancer · Pubmed #22438075.

ABSTRACT: Several studies support a protective effect of dietary magnesium against type 2 diabetes, but a harmful effect for iron. As diabetes has been linked to pancreatic cancer, intake of these nutrients may be also associated with this cancer. We examined the association between dietary intake of magnesium, total iron and heme-iron and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. In total, 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After an average follow-up of 11.3 years, 396 men and 469 women developed exocrine pancreatic cancer. Hazard ratios and 95% confidence intervals (CIs) were obtained using Cox regression stratified by age and center, and adjusted for energy intake, smoking status, height, weight, and self-reported diabetes status. Neither intake of magnesium, total iron nor heme-iron was associated with pancreatic cancer risk. In stratified analyses, a borderline inverse association was observed among overweight men (body mass index, ≥ 25 kg/m(2) ) with magnesium (HR(per 100 mg/day increase) = 0.79, 95% CI = 0.63-1.01) although this was less apparent using calibrated intake. In female smokers, a higher intake of heme-iron was associated with a higher pancreatic cancer risk (HR (per 1 mg/day increase) = 1.38, 95% CI = 1.10-1.74). After calibration, this risk increased significantly to 2.5-fold (95% CI = 1.22-5.28). Overall, dietary magnesium, total iron and heme-iron were not associated with pancreatic cancer risk during the follow-up period. Our observation that heme-iron was associated with increased pancreatic cancer risk in female smokers warrants replication in additional study populations.

23 Article Concentrations of IGF-I and IGFBP-3 and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. 2012

Rohrmann, S / Grote, V A / Becker, S / Rinaldi, S / Tjønneland, A / Roswall, N / Grønbæk, H / Overvad, K / Boutron-Ruault, M C / Clavel-Chapelon, F / Racine, A / Teucher, B / Boeing, H / Drogan, D / Dilis, V / Lagiou, P / Trichopoulou, A / Palli, D / Tagliabue, G / Tumino, R / Vineis, P / Mattiello, A / Rodríguez, L / Duell, E J / Molina-Montes, E / Dorronsoro, M / Huerta, J-M / Ardanaz, E / Jeurnink, S / Peeters, P H M / Lindkvist, B / Johansen, D / Sund, M / Ye, W / Khaw, K-T / Wareham, N J / Allen, N E / Crowe, F L / Fedirko, V / Jenab, M / Michaud, D S / Norat, T / Riboli, E / Bueno-de-Mesquita, H B / Kaaks, R. ·Division of Cancer Epidemiology and Prevention, Institute of Social and Preventive Medicine, University of Zurich, Hirschengraben 84, Zürich 8001, Switzerland. sabine.rohrmann@ifspm.uzh.ch ·Br J Cancer · Pubmed #22315049.

ABSTRACT: BACKGROUND: Insulin-like growth factors (IGFs) and their binding proteins (BPs) regulate cell differentiation, proliferation and apoptosis, and may have a role in the aetiology of various cancers. Information on their role in pancreatic cancer is limited and was examined here in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition. METHODS: Serum concentrations of IGF-I and IGFBP-3 were measured using enzyme-linked immunosorbent assays in 422 cases and 422 controls matched on age, sex, study centre, recruitment date, and time since last meal. Conditional logistic regression was used to compute odds ratios (OR) and 95% confidence intervals (CI) adjusted for confounding variables. RESULTS: Neither circulating levels of IGF-I (OR=1.21, 95% CI 0.75-1.93 for top vs bottom quartile, P-trend 0.301), IGFBP-3 (OR=1.00, 95% CI 0.66-1.51, P-trend 0.79), nor the molar IGF-I/IGFBP-3 ratio, an indicator of free IGF-I level (OR=1.22, 95% CI 0.75-1.97, P-trend 0.27), were statistically significantly associated with the risk of pancreatic cancer. In a cross-classification, however, a high concentration of IGF-I with concurrently low levels of IGFBP-3 was related to an increased risk of pancreatic cancer (OR=1.72, 95% CI 1.05-2.83; P-interaction=0.154). CONCLUSION: On the basis of these results, circulating levels of components of the IGF axis do not appear to be the risk factors for pancreatic cancer. However, on the basis of the results of a subanalysis, it cannot be excluded that a relatively large amount of IGF-1 together with very low levels of IGFBP-3 might still be associated with an increase in pancreatic cancer risk.

24 Article The associations of advanced glycation end products and its soluble receptor with pancreatic cancer risk: a case-control study within the prospective EPIC Cohort. 2012

Grote, Verena A / Nieters, Alexandra / Kaaks, Rudolf / Tjønneland, Anne / Roswall, Nina / Overvad, Kim / Nielsen, Michael R Skjelbo / Clavel-Chapelon, Françoise / Boutron-Ruault, Marie Christine / Racine, Antoine / Teucher, Birgit / Lukanova, Annekatrin / Boeing, Heiner / Drogan, Dagmar / Trichopoulou, Antonia / Trichopoulos, Dimitrios / Lagiou, Pagona / Palli, Domenico / Sieri, Sabina / Tumino, Rosario / Vineis, Paolo / Mattiello, Amalia / Argüelles Suárez, Marcial Vicente / Duell, Eric J / Sánchez, María-José / Dorronsoro, Miren / Huerta Castaño, José María / Barricarte, Aurelio / Jeurnink, Suzanne M / Peeters, Petra H M / Sund, Malin / Ye, Weimin / Regner, Sara / Lindkvist, Björn / Khaw, Kay-Tee / Wareham, Nick / Allen, Naomi E / Crowe, Francesca L / Fedirko, Veronika / Jenab, Mazda / Romaguera, Dora / Siddiq, Afshan / Bueno-de-Mesquita, H Bas / Rohrmann, Sabine. ·Division of Cancer Epidemiology c020, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany. ·Cancer Epidemiol Biomarkers Prev · Pubmed #22301828.

ABSTRACT: BACKGROUND: Advanced glycation end products (AGE) and their receptors (RAGE) have been implicated in cancer development through their proinflammatory capabilities. However, prospective data on their association with cancer of specific sites, including pancreatic cancer, are limited. METHODS: Prediagnostic blood levels of the AGE product Nε-(carboxymethyl)lysine (CML) and the endogenous secreted receptor for AGE (esRAGE) were measured using ELISA in 454 patients with exocrine pancreatic cancer and individually matched controls within the European Prospective Investigation into Cancer and Nutrition (EPIC). Pancreatic cancer risk was estimated by calculating ORs with corresponding 95% confidence intervals (CI). RESULTS: Elevated CML levels tended to be associated with a reduction in pancreatic cancer risk [OR = 0.57 (95% CI, 0.32-1.01) comparing highest with lowest quintile), whereas no association was observed for esRAGE (OR = 0.98; 95% CI, 0.62-1.54). Adjustments for body mass index and smoking attenuated the inverse associations of CML with pancreatic cancer risk (OR = 0.78; 95% CI, 0.41-1.49). There was an inverse association between esRAGE and risk of pancreatic cancer for cases that were diagnosed within the first 2 years of follow-up [OR = 0.46 (95% CI, 0.22-0.96) for a doubling in concentration], whereas there was no association among those with a longer follow-up (OR = 1.11; 95% CI, 0.88-1.39; P(interaction) = 0.002). CONCLUSIONS AND IMPACT: Our results do not provide evidence for an association of higher CML or lower esRAGE levels with risk of pancreatic cancer. The role of AGE/RAGE in pancreatic cancer would benefit from further investigations.

25 Article Plasma cotinine levels and pancreatic cancer in the EPIC cohort study. 2012

Leenders, Max / Chuang, Shu-Chun / Dahm, Christina C / Overvad, Kim / Ueland, Per Magne / Midttun, Oivind / Vollset, Stein Emil / Tjønneland, Anne / Halkjaer, Jytte / Jenab, Mazda / Clavel-Chapelon, Françoise / Boutron-Ruault, Marie-Christine / Kaaks, Rudolf / Canzian, Federico / Boeing, Heiner / Weikert, Cornelia / Trichopoulou, Antonia / Bamia, Christina / Naska, Androniki / Palli, Domenico / Pala, Valeria / Mattiello, Amalia / Tumino, Rosario / Sacerdote, Carlotta / van Duijnhoven, Fränzel J B / Peeters, Petra H M / van Gils, Carla H / Lund, Eiliv / Rodriguez, Laudina / Duell, Eric J / Pérez, María-José Sánchez / Molina-Montes, Esther / Castaño, José María Huerta / Barricarte, Aurelio / Larrañaga, Nerea / Johansen, Dorthe / Lindkvist, Björn / Sund, Malin / Ye, Weimin / Khaw, Kay-Tee / Wareham, Nicholas J / Michaud, Dominique S / Riboli, Elio / Xun, Wei W / Allen, Naomi E / Crowe, Francesca L / Bueno-de-Mesquita, H Bas / Vineis, Paolo. ·School of Public Health, Imperial College London, London, UK. m.leenders-6@umcutrecht.nl ·Int J Cancer · Pubmed #21953524.

ABSTRACT: Smoking is an established risk factor for pancreatic cancer, previously investigated by the means of questionnaires. Using cotinine as a biomarker for tobacco exposure allows more accurate quantitative analyses to be performed. This study on pancreatic cancer, nested within the European Prospective Investigation into Cancer and Nutrition (EPIC cohort), included 146 cases and 146 matched controls. Using liquid chromatography-mass spectrometry, plasma cotinine levels were analyzed on average 8.0 years before cancer onset (5-95% range: 2.8-12.0 years). The relation between plasma cotinine levels and pancreatic cancer was analyzed with conditional logistic regression for different levels of cotinine in a population of never and current smokers. This was also done for the self-reported number of smoked cigarettes per day at baseline. Every increase of 350 nmol/L of plasma cotinine was found to significantly elevate risk of pancreatic cancer [odds ratio (OR): 1.33, 95% confidence interval (CI): 1.11-1.60]. People with a cotinine level over 1187.8 nmol/L, a level comparable to smoking 17 cigarettes per day, have an elevated risk of pancreatic cancer, compared to people with cotinine levels below 55 nmol/L (OR: 3.66, 95% CI: 1.44-9.26). The results for self-reported smoking at baseline also show an increased risk of pancreatic cancer from cigarette smoking based on questionnaire information. People who smoke more than 30 cigarettes per day showed the highest risk compared to never smokers (OR: 4.15, 95% CI: 1.02-16.42). This study is the first to show that plasma cotinine levels are strongly related to pancreatic cancer.

Next