Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Elena M. Stoffel
Based on 5 articles published since 2009
(Why 5 articles?)
||||

Between 2009 and 2019, Elena Stoffel wrote the following 5 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Heritable Gastrointestinal Cancer Syndromes. 2016

Stoffel, Elena M. ·Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, 2150A Cancer Center, Ann Arbor, MI 48109, USA. Electronic address: estoffel@med.umich.edu. ·Gastroenterol Clin North Am · Pubmed #27546846.

ABSTRACT: Although almost all gastrointestinal cancers develop from sporadic genomic events, approximately 5% arise from germline mutations in genes associated with cancer predisposition. The number of these genes continues to increase. Tumor phenotypes and family history provide the framework for identifying at-risk individuals. The diagnosis of a hereditary cancer syndrome has implications for management of patients and their families. Systematic approaches that integrate family history and molecular characterization of tumors and polyps facilitate identification of individuals with this genetic predisposition. This article summarizes diagnosis and management of hereditary cancer syndromes associated with gastrointestinal cancers.

2 Review Familial gastric and pancreatic cancers: Diagnosis and screening. 2013

Raymond, Victoria M / Stoffel, Elena M. ·From the Divisions of Gastroenterology and Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI. ·Am Soc Clin Oncol Educ Book · Pubmed #23714452.

ABSTRACT: Screening for gastric and pancreatic cancers in asymptomatic individuals is not routinely practiced in the United States. While there is insufficient evidence that general population screening would reduce morbidity and/or mortality associated with these cancers, the utility of screening for individuals at increased risk warrants further study. Clinical challenges include identifying high risk individuals who would be most likely to benefit from screening and determining which screening modalities and intervals would be most effective.

3 Clinical Trial Mutations in the pancreatic secretory enzymes 2018

Tamura, Koji / Yu, Jun / Hata, Tatsuo / Suenaga, Masaya / Shindo, Koji / Abe, Toshiya / MacGregor-Das, Anne / Borges, Michael / Wolfgang, Christopher L / Weiss, Matthew J / He, Jin / Canto, Marcia Irene / Petersen, Gloria M / Gallinger, Steven / Syngal, Sapna / Brand, Randall E / Rustgi, Anil / Olson, Sara H / Stoffel, Elena / Cote, Michele L / Zogopoulos, George / Potash, James B / Goes, Fernando S / McCombie, Richard W / Zandi, Peter P / Pirooznia, Mehdi / Kramer, Melissa / Parla, Jennifer / Eshleman, James R / Roberts, Nicholas J / Hruban, Ralph H / Klein, Alison Patricia / Goggins, Michael. ·Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · Health Sciences Research, Mayo Clinic, Rochester, MN 55905. · Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5. · Population Sciences Division, Dana-Farber Cancer Institute, Boston, MA 02215. · Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213. · Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104. · Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104. · Pancreatic Cancer Translational Center of Excellence, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104. · Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017. · Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109. · Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201. · The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada H3H 2R9. · The Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada H3A 1A3. · Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21287. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. · InGenious Targeting Laboratory, Ronkonkoma, NY 11779. · Department of Epidemiology, Bloomberg School of Public Health, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. · Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; mgoggins@jhmi.edu. ·Proc Natl Acad Sci U S A · Pubmed #29669919.

ABSTRACT: To evaluate whether germline variants in genes encoding pancreatic secretory enzymes contribute to pancreatic cancer susceptibility, we sequenced the coding regions of

4 Article Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. 2016

Roberts, Nicholas J / Norris, Alexis L / Petersen, Gloria M / Bondy, Melissa L / Brand, Randall / Gallinger, Steven / Kurtz, Robert C / Olson, Sara H / Rustgi, Anil K / Schwartz, Ann G / Stoffel, Elena / Syngal, Sapna / Zogopoulos, George / Ali, Syed Z / Axilbund, Jennifer / Chaffee, Kari G / Chen, Yun-Ching / Cote, Michele L / Childs, Erica J / Douville, Christopher / Goes, Fernando S / Herman, Joseph M / Iacobuzio-Donahue, Christine / Kramer, Melissa / Makohon-Moore, Alvin / McCombie, Richard W / McMahon, K Wyatt / Niknafs, Noushin / Parla, Jennifer / Pirooznia, Mehdi / Potash, James B / Rhim, Andrew D / Smith, Alyssa L / Wang, Yuxuan / Wolfgang, Christopher L / Wood, Laura D / Zandi, Peter P / Goggins, Michael / Karchin, Rachel / Eshleman, James R / Papadopoulos, Nickolas / Kinzler, Kenneth W / Vogelstein, Bert / Hruban, Ralph H / Klein, Alison P. ·Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas. · Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. · Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York. · Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. · Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan. · Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. · Population Sciences Division, Dana-Farber Cancer Institute, and Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts. · The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada. Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada. · Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland. · Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. · Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Memorial Sloan Kettering Cancer Center, New York, New York. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. · Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. inGenious Targeting Laboratory, Ronkonkoma, New York. · Department of Psychiatry, University of Iowa, Iowa City, Iowa. · Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Michigan, Ann Arbor, Michigan. · Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. ·Cancer Discov · Pubmed #26658419.

ABSTRACT: SIGNIFICANCE: The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.

5 Article Risk of pancreatic cancer in families with Lynch syndrome. 2009

Kastrinos, Fay / Mukherjee, Bhramar / Tayob, Nabihah / Wang, Fei / Sparr, Jennifer / Raymond, Victoria M / Bandipalliam, Prathap / Stoffel, Elena M / Gruber, Stephen B / Syngal, Sapna. ·Department of Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA. ·JAMA · Pubmed #19861671.

ABSTRACT: CONTEXT: Lynch syndrome is an inherited cause of colorectal cancer caused by mutations of DNA mismatch repair (MMR) genes. A number of extracolonic tumors have been associated with the disorder, including pancreatic cancer; however, the risk of pancreatic cancer in Lynch syndrome is uncertain and not quantified. OBJECTIVE: To estimate pancreatic cancer risk in families with germline MMR gene mutations. DESIGN, SETTING, AND PATIENTS: Cancer histories of probands and their relatives were evaluated in MMR gene mutation carriers in the familial cancer registries of the Dana-Farber Cancer Institute (n = 80), Boston, Massachusetts, and University of Michigan Comprehensive Cancer Center (n = 67), Ann Arbor, Michigan. Families enrolled before the study start date (June 2008) were eligible. Age-specific cumulative risks and hazard ratio estimates of pancreatic cancer risk were calculated and compared with the general population using modified segregation analysis, with correction for ascertainment. MAIN OUTCOME MEASURES: Age-specific cumulative risks and hazard ratio estimates of pancreatic cancer risk. RESULTS: Data on 6342 individuals from 147 families with MMR gene mutations were analyzed. Thirty-one families (21.1%) reported at least 1 case of pancreatic cancer. Forty-seven pancreatic cancers were reported (21 men and 26 women), with no sex-related difference in age of diagnosis (51.5 vs 56.5 years for men and women, respectively). The cumulative risk of pancreatic cancer in these families with gene mutations was 1.31% (95% confidence interval [CI], 0.31%-2.32%) up to age 50 years and 3.68% (95% CI, 1.45%-5.88%) up to age 70 years, which represents an 8.6-fold increase (95% CI, 4.7-15.7) compared with the general population. CONCLUSIONS: Among 147 families with germline MMR gene mutations, the risk of pancreatic cancer was increased compared with the US population. Individuals with MMR gene mutations and a family history of pancreatic cancer are appropriate to include in studies to further define the risk of premalignant and malignant pancreatic neoplasms and potential benefits and limitations of surveillance.