Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Anita Steptoe
Based on 1 article published since 2010
(Why 1 article?)
||||

Between 2010 and 2020, Anita Steptoe wrote the following article about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing. 2014

Quek, Kelly / Nones, Katia / Patch, Ann-Marie / Fink, J Lynn / Newell, Felicity / Cloonan, Nicole / Miller, David / Fadlullah, Muhammad Z H / Kassahn, Karin / Christ, Angelika N / Bruxner, Timothy J C / Manning, Suzanne / Harliwong, Ivon / Idrisoglu, Senel / Nourse, Craig / Nourbakhsh, Ehsan / Wani, Shivangi / Steptoe, Anita / Anderson, Matthew / Holmes, Oliver / Leonard, Conrad / Taylor, Darrin / Wood, Scott / Xu, Qinying / Anonymous6170799 / Wilson, Peter / Biankin, Andrew V / Pearson, John V / Waddell, Nic / Grimmond, Sean M. ·Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, Australia. · The Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Surgery, Bankstown Hospital, Sydney, NSW, Australia; South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, NSW, Australia; Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, Australia; Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom. ·Biotechniques · Pubmed #25005691.

ABSTRACT: Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort. To increase the verification throughput, we devised a high-throughput workflow that utilizes benchtop next-generation sequencing and in-house bioinformatics tools to link the laboratory processes. In the proposed workflow, primers are automatically designed. PCR and an optional gel electrophoresis step to confirm the somatic nature of the rearrangements are performed. PCR products of somatic events are pooled for Ion Torrent PGM and/or Illumina MiSeq sequencing, the resulting sequence reads are assembled into consensus contigs by a consensus assembler, and an automated BLAT is used to resolve the breakpoints to base level. We compared sequences and breakpoints of verified somatic rearrangements between the conventional and high-throughput workflow. The results showed that next-generation sequencing methods are comparable to conventional Sanger sequencing. The identified breakpoints obtained from next-generation sequencing methods were highly accurate and reproducible. Furthermore, the proposed workflow allows hundreds of events to be processed in a shorter time frame compared with the conventional workflow.