Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Angela M. Steinmann
Based on 3 articles published since 2010
(Why 3 articles?)
||||

Between 2010 and 2020, Angela Steinmann wrote the following 3 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. 2018

Chou, Angela / Froio, Danielle / Nagrial, Adnan M / Parkin, Ashleigh / Murphy, Kendelle J / Chin, Venessa T / Wohl, Dalia / Steinmann, Angela / Stark, Rhys / Drury, Alison / Walters, Stacey N / Vennin, Claire / Burgess, Andrew / Pinese, Mark / Chantrill, Lorraine A / Cowley, Mark J / Molloy, Timothy J / Anonymous170925 / Waddell, Nicola / Johns, Amber / Grimmond, Sean M / Chang, David K / Biankin, Andrew V / Sansom, Owen J / Morton, Jennifer P / Grey, Shane T / Cox, Thomas R / Turchini, John / Samra, Jaswinder / Clarke, Stephen J / Timpson, Paul / Gill, Anthony J / Pajic, Marina. ·The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. · Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, SYDPATH, Darlinghurst, Australia. · Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia. · St. Vincent's Hospital, Darlinghurst, Australia. · St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia. · Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia. · University of Melbourne, Melbourne, Victoria, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK. · Department of Surgery, Cancer Research UK, Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. · Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia. · Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, New South Wales, Australia. · Department of Surgery, Royal North Shore Hospital, Sydney, New South Wales, Australia. ·Gut · Pubmed #29080858.

ABSTRACT: OBJECTIVE: Extensive molecular heterogeneity of pancreatic ductal adenocarcinoma (PDA), few effective therapies and high mortality make this disease a prime model for advancing development of tailored therapies. The p16-cyclin D-cyclin-dependent kinase 4/6-retinoblastoma (RB) protein (CDK4) pathway, regulator of cell proliferation, is deregulated in PDA. Our aim was to develop a novel personalised treatment strategy for PDA based on targeting CDK4. DESIGN: Sensitivity to potent CDK4/6 inhibitor PD-0332991 (palbociclib) was correlated to protein and genomic data in 19 primary patient-derived PDA lines to identify biomarkers of response. In vivo efficacy of PD-0332991 and combination therapies was determined in subcutaneous, intrasplenic and orthotopic tumour models derived from genome-sequenced patient specimens and genetically engineered model. Mechanistically, monotherapy and combination therapy were investigated in the context of tumour cell and extracellular matrix (ECM) signalling. Prognostic relevance of companion biomarker, RB protein, was evaluated and validated in independent PDA patient cohorts (>500 specimens). RESULTS: Subtype-specific in vivo efficacy of PD-0332991-based therapy was for the first time observed at multiple stages of PDA progression: primary tumour growth, recurrence (second-line therapy) and metastatic setting and may potentially be guided by a simple biomarker (RB protein). PD-0332991 significantly disrupted surrounding ECM organisation, leading to increased quiescence, apoptosis, improved chemosensitivity, decreased invasion, metastatic spread and PDA progression in vivo. RB protein is prevalent in primary operable and metastatic PDA and may present a promising predictive biomarker to guide this therapeutic approach. CONCLUSION: This study demonstrates the promise of CDK4 inhibition in PDA over standard therapy when applied in a molecular subtype-specific context.

2 Article Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. 2017

Vennin, Claire / Chin, Venessa T / Warren, Sean C / Lucas, Morghan C / Herrmann, David / Magenau, Astrid / Melenec, Pauline / Walters, Stacey N / Del Monte-Nieto, Gonzalo / Conway, James R W / Nobis, Max / Allam, Amr H / McCloy, Rachael A / Currey, Nicola / Pinese, Mark / Boulghourjian, Alice / Zaratzian, Anaiis / Adam, Arne A S / Heu, Celine / Nagrial, Adnan M / Chou, Angela / Steinmann, Angela / Drury, Alison / Froio, Danielle / Giry-Laterriere, Marc / Harris, Nathanial L E / Phan, Tri / Jain, Rohit / Weninger, Wolfgang / McGhee, Ewan J / Whan, Renee / Johns, Amber L / Samra, Jaswinder S / Chantrill, Lorraine / Gill, Anthony J / Kohonen-Corish, Maija / Harvey, Richard P / Biankin, Andrew V / Anonymous3070902 / Evans, T R Jeffry / Anderson, Kurt I / Grey, Shane T / Ormandy, Christopher J / Gallego-Ortega, David / Wang, Yingxiao / Samuel, Michael S / Sansom, Owen J / Burgess, Andrew / Cox, Thomas R / Morton, Jennifer P / Pajic, Marina / Timpson, Paul. ·The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. · St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia. · Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia. · Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. · Department of Pathology, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia. · Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia. · Immune Imaging Program, Centenary Institute, University of Sydney, Sydney, New South Wales 2006, Australia. · University of Sydney Medical School, Sydney, New South Wales 2006, Australia. · Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · Cancer Research UK Beatson Institute, Glasgow, Scotland G61 BD, U.K. · Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research and Royal North Shore Hospital, Sydney, New South Wales 2065, Australia. · University of Sydney, Sydney, New South Wales 2006, Australia. · Australian Pancreatic Cancer Genome Initiative. · Department of Surgery, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia. · Macarthur Cancer Therapy Centre, Campbelltown Hospital, Sydney, New South Wales 2560, Australia. · School of Medicine, Western Sydney University, Penrith, Sydney, New South Wales 2751, Australia. · School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland G61 BD, U.K. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Scotland G61 BD, U.K. · Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92121, USA. · Centre for Cancer Biology, SA Pathology and University of South Australia School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia. · The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. m.pajic@garvan.org.au p.timpson@garvan.org.au. ·Sci Transl Med · Pubmed #28381539.

ABSTRACT: The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.

3 Article Whole genomes redefine the mutational landscape of pancreatic cancer. 2015

Waddell, Nicola / Pajic, Marina / Patch, Ann-Marie / Chang, David K / Kassahn, Karin S / Bailey, Peter / Johns, Amber L / Miller, David / Nones, Katia / Quek, Kelly / Quinn, Michael C J / Robertson, Alan J / Fadlullah, Muhammad Z H / Bruxner, Tim J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / Manning, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Wani, Shivangi / Wilson, Peter J / Markham, Emma / Cloonan, Nicole / Anderson, Matthew J / Fink, J Lynn / Holmes, Oliver / Kazakoff, Stephen H / Leonard, Conrad / Newell, Felicity / Poudel, Barsha / Song, Sarah / Taylor, Darrin / Waddell, Nick / Wood, Scott / Xu, Qinying / Wu, Jianmin / Pinese, Mark / Cowley, Mark J / Lee, Hong C / Jones, Marc D / Nagrial, Adnan M / Humphris, Jeremy / Chantrill, Lorraine A / Chin, Venessa / Steinmann, Angela M / Mawson, Amanda / Humphrey, Emily S / Colvin, Emily K / Chou, Angela / Scarlett, Christopher J / Pinho, Andreia V / Giry-Laterriere, Marc / Rooman, Ilse / Samra, Jaswinder S / Kench, James G / Pettitt, Jessica A / Merrett, Neil D / Toon, Christopher / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Jamieson, Nigel B / Graham, Janet S / Niclou, Simone P / Bjerkvig, Rolf / Grützmann, Robert / Aust, Daniela / Hruban, Ralph H / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Corbo, Vincenzo / Bassi, Claudio / Falconi, Massimo / Zamboni, Giuseppe / Tortora, Giampaolo / Tempero, Margaret A / Anonymous400822 / Gill, Anthony J / Eshleman, James R / Pilarsky, Christian / Scarpa, Aldo / Musgrove, Elizabeth A / Pearson, John V / Biankin, Andrew V / Grimmond, Sean M. ·1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. · Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. · 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. · Norlux Neuro-Oncology Laboratory, CRP-Santé Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. · Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. · Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. · The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. · ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. · 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. · Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. · Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ·Nature · Pubmed #25719666.

ABSTRACT: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.