Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Guri Skeie
Based on 13 articles published since 2010
(Why 13 articles?)
||||

Between 2010 and 2020, G. Skeie wrote the following 13 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Potato consumption and risk of pancreatic cancer in the HELGA cohort. 2018

Åsli, Lene A / Braaten, Tonje / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Nilsson, Lena Maria / Renström, Frida / Lund, Eiliv / Skeie, Guri. ·1Department of Community Medicine,University of Tromsø - The Arctic University of Norway,N-9037 Tromsø,Norway. · 2Danish Cancer Society Research Center,Strandboulevarden 49,2100 Copenhagen,Denmark. · 3Department of Public Health,Section for Epidemiology,Bartholins Alle 2,8000 Aarhus C,Denmark. · 4Arctic Research Centre at Umeå University (Arcum),901 87 Umeå,Sweden. · 6Department of Biobank Research,Umeå University,901 87 Umeå,Sweden. ·Br J Nutr · Pubmed #29845900.

ABSTRACT: Potatoes have been a staple food in many countries throughout the years. Potatoes have a high glycaemic index (GI) score, and high GI has been associated with several chronic diseases and cancers. Still, the research on potatoes and health is scarce and contradictive, and we identified no prospective studies that had investigated the association between potatoes as a single food and the risk of pancreatic cancer. The aim of this study was to prospectively investigate the association between potato consumption and pancreatic cancer among 114 240 men and women in the prospective HELGA cohort, using Cox proportional hazard models. Information on diet (validated FFQ's), lifestyle and health was collected by means of a questionnaire, and 221 pancreatic cancer cases were identified through cancer registries. The mean follow-up time was 11·4 (95 % CI 0·3, 16·9) years. High consumption of potatoes showed a non-significantly higher risk of pancreatic cancer in the adjusted model (hazard ratio (HR) 1·44; 95 % CI 0·93, 2·22, P for trend 0·030) when comparing the highest v. the lowest quartile of potato consumption. In the sex-specific analyses, significant associations were found for females (HR 2·00; 95 % CI 1·07, 3·72, P for trend 0·020), but not for males (HR 1·01; 95 % CI 0·56, 1·84, P for trend 0·34). In addition, we explored the associations by spline regression, and the absence of dose-response effects was confirmed. In this study, high potato consumption was not consistently associated with a higher risk of pancreatic cancer. Further studies with larger populations are needed to explore the possible sex difference.

2 Article Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition. 2020

Obón-Santacana, Mireia / Luján-Barroso, Leila / Freisling, Heinz / Naudin, Sabine / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Rebours, Vinciane / Kühn, Tilman / Katzke, Verena / Boeing, Heiner / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Lasheras, Cristina / Rodríguez-Barranco, Miguel / Amiano, Pilar / Santiuste, Carmen / Ardanaz, Eva / Khaw, Kay-Thee / Wareham, Nicholas J / Schmidt, Julie A / Aune, Dagfinn / Trichopoulou, Antonia / Thriskos, Paschalis / Peppa, Eleni / Masala, Giovanna / Grioni, Sara / Tumino, Rosario / Panico, Salvatore / Bueno-de-Mesquita, Bas / Sciannameo, Veronica / Vermeulen, Roel / Sonestedt, Emily / Sund, Malin / Weiderpass, Elisabete / Skeie, Guri / González, Carlos A / Riboli, Elio / Duell, Eric J. ·Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Department of Nursing of Public Health, Mental Health and Maternity and Child Health School of Nursing, Universitat de Barcelona, Barcelona, Spain. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France. · Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, DHU Unity, AP-HP, Clichy, and Paris-Diderot University, Paris, France. · Inserm UMR1149, DHU Unity, and Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Reserach Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Hellenic Health Foundation, Athens, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M. P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Unit of Epidemiology, Regional Health Service ASL TO3, Turin, Italy. · Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands. · Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · International Agency for Research on Cancer, Lyon, France. · Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. ·Int J Cancer · Pubmed #31107546.

ABSTRACT: Four epidemiologic studies have assessed the association between nut intake and pancreatic cancer risk with contradictory results. The present study aims to investigate the relation between nut intake (including seeds) and pancreatic ductal adenocarcinoma (PDAC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Cox proportional hazards models were used to estimate hazards ratio (HR) and 95% confidence intervals (95% CI) for nut intake and PDAC risk. Information on intake of nuts was obtained from the EPIC country-specific dietary questionnaires. After a mean follow-up of 14 years, 476,160 participants were eligible for the present study and included 1,283 PDAC cases. No association was observed between consumption of nuts and PDAC risk (highest intake vs nonconsumers: HR, 0.89; 95% CI, 0.72-1.10; p-trend = 0.70). Furthermore, no evidence for effect-measure modification was observed when different subgroups were analyzed. Overall, in EPIC, the highest intake of nuts was not statistically significantly associated with PDAC risk.

3 Article Dietary folate intake and pancreatic cancer risk: Results from the European prospective investigation into cancer and nutrition. 2019

Park, Jin Young / Bueno-de-Mesquita, H Bas / Ferrari, Pietro / Weiderpass, Elisabete / de Batlle, Jordi / Tjønneland, Anne / Kyro, Cecilie / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Katzke, Verena / Kühn, Tilman / Boeing, Heiner / Trichopoulou, Antonia / La Vecchia, Carlo / Kritikou, Maria / Masala, Giovanna / Pala, Valeria / Tumino, Rosario / Panico, Salvatore / Peeters, Petra H / Skeie, Guri / Merino, Susana / Duell, Eric J / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, Maria-Dolores / Ardanaz, Eva / Gylling, Björn / Schneede, Jörn / Ericson, Ulrika / Sternby, Hanna / Khaw, Kay-Tee / Bradbury, Kathryn E / Huybrechts, Inge / Aune, Dagfinn / Vineis, Paolo / Slimani, Nadia. ·International Agency for Research on Cancer, Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · School of Public Health, Imperial College London, London, United Kingdom. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway. · Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Group of Translational Research in Respiratory Medicine, IRBLleida, Hospital Universitari Arnau de Vilanova and Santa Maria, Lleida, Spain. · Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM-UMR 1149, University Paris 7, France. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, Université Paris-Saclay, France. · Gustave Roussy, Villejuif, France. · German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Germany. · Hellenic Health Foundation, Athens, Greece. · Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy. · Epidemiology and Prevention Unit, IRCCS Foundation National Cancer Institute, Milan, Italy. · Cancer Registry and Histopathology Department, 'Civic-M.P. Arezzo' Hospital, ASP Ragusa, Italy. · Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Dirección de Salud Pública y Adicciones, Gobierno Vasco, Vitoria, Spain. · Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden. · Department of Clinical Pharmacology, Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden. · Diabetes and Cardiovascular disease, Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Sweden. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom. · Bjørknes University College, Oslo, Norway. · IIGM Foundation, Turin, Italy. ·Int J Cancer · Pubmed #30178496.

ABSTRACT: Pancreatic cancer (PC) has an exceptionally low survival rate and primary prevention strategies are limited. Folate plays an important role in one-carbon metabolism and has been associated with the risk of several cancers, but not consistently with PC risk. We aimed to investigate the association between dietary folate intake and PC risk, using the standardised folate database across 10 European countries. A total of 477,206 participants were followed up for 11 years, during which 865 incident primary PC cases were recorded. Folate intake was energy-adjusted using the residual method. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. In multivariable analyses stratified by age, sex, study centre and adjusted for energy intake, smoking status, BMI, educational level, diabetes status, supplement use and dietary fibre intake, we found no significant association between folate intake and PC risk: the HR of PC risk for those in the highest quartile of folate intake (≥353 μg/day) compared to the lowest (<241 μg/day) was 0.81 (95% CI: 0.51, 1.31; p

4 Article Lifetime and baseline alcohol intakes and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition study. 2018

Naudin, Sabine / Li, Kuanrong / Jaouen, Tristan / Assi, Nada / Kyrø, Cecilie / Tjønneland, Anne / Overvad, Kim / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Védié, Anne-Laure / Boeing, Heiner / Kaaks, Rudolf / Katzke, Verena / Bamia, Christina / Naska, Androniki / Trichopoulou, Antonia / Berrino, Franco / Tagliabue, Giovanna / Palli, Domenico / Panico, Salvatore / Tumino, Rosario / Sacerdote, Carlotta / Peeters, Petra H / Bueno-de-Mesquita, H B As / Weiderpass, Elisabete / Gram, Inger Torhild / Skeie, Guri / Chirlaque, Maria-Dolores / Rodríguez-Barranco, Miguel / Barricarte, Aurelio / Quirós, Jose Ramón / Dorronsoro, Miren / Johansson, Ingegerd / Sund, Malin / Sternby, Hanna / Bradbury, Kathryn E / Wareham, Nick / Riboli, Elio / Gunter, Marc / Brennan, Paul / Duell, Eric J / Ferrari, Pietro. ·Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, University of Paris-Saclay, Villejuif, France. · Institut Gustave Roussy, Villejuif, France. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM U1149, University Paris 7, Paris, France. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Hellenic Health Foundation, Athens, Greece. · Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, WHO Collaborating Center for Nutrition and Health, National and Kapodistrian University of Athens, Athens, Greece. · Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy. · Department of Clinical and Experimental Medicine, University Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, Civic M.P.Arezzo Hospital, Ragusa, Italy, Ragusa, Italy. · Unit of Cancer Epidemiology, Hospital and Center for Cancer Prevention (CPO), Città della Salute e della Scienza University, Turin, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala, Malaysia, Lumpur. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Department of Health and Social Sciences, University of Murcia, Murcia, Spain. · Biosanitary Investigation Institute (IBS) of Granada, University Hospital and University of Granada, Granada, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Navarra Institute for Health Research (IdiSNA), Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Subdirección de Salud Pública de Gipuzkoa, Gobierno Vasco, San Sebastian, Spain. · Department of Odontology, Cariology, Umeå University, Umeå, Sweden. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom. · School of Public Health, Imperial College London, London, United Kingdom. · Nutrition and Epidemiology Group, International Agency for Research on Cancer, Lyon, France. · Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. ·Int J Cancer · Pubmed #29524225.

ABSTRACT: Recent evidence suggested a weak relationship between alcohol consumption and pancreatic cancer (PC) risk. In our study, the association between lifetime and baseline alcohol intakes and the risk of PC was evaluated, including the type of alcoholic beverages and potential interaction with smoking. Within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, 1,283 incident PC (57% women) were diagnosed from 476,106 cancer-free participants, followed up for 14 years. Amounts of lifetime and baseline alcohol were estimated through lifestyle and dietary questionnaires, respectively. Cox proportional hazard models with age as primary time variable were used to estimate PC hazard ratios (HR) and their 95% confidence interval (CI). Alcohol intake was positively associated with PC risk in men. Associations were mainly driven by extreme alcohol levels, with HRs comparing heavy drinkers (>60 g/day) to the reference category (0.1-4.9 g/day) equal to 1.77 (95% CI: 1.06, 2.95) and 1.63 (95% CI: 1.16, 2.29) for lifetime and baseline alcohol, respectively. Baseline alcohol intakes from beer (>40 g/day) and spirits/liquors (>10 g/day) showed HRs equal to 1.58 (95% CI: 1.07, 2.34) and 1.41 (95% CI: 1.03, 1.94), respectively, compared to the reference category (0.1-2.9 g/day). In women, HR estimates did not reach statistically significance. The alcohol and PC risk association was not modified by smoking status. Findings from a large prospective study suggest that baseline and lifetime alcohol intakes were positively associated with PC risk, with more apparent risk estimates for beer and spirits/liquors than wine intake.

5 Article Mediterranean diet and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition cohort. 2017

Molina-Montes, Esther / Sánchez, María-José / Buckland, Genevieve / Bueno-de-Mesquita, H B As / Weiderpass, Elisabete / Amiano, Pilar / Wark, Petra A / Kühn, Tilman / Katzke, Verena / Huerta, José María / Ardanaz, Eva / Quirós, José Ramón / Affret, Aurélie / His, Mathilde / Boutron-Ruault, Marie-Christine / Peeters, Petra H / Ye, Weimin / Sund, Malin / Boeing, Heiner / Iqbal, Khalid / Ohlsson, Bodil / Sonestedt, Emily / Tjønneland, Anne / Petersen, Kristina En / Travis, Ruth C / Skeie, Guri / Agnoli, Claudia / Panico, Salvatore / Palli, Domenico / Tumino, Rosario / Sacerdote, Carlotta / Freisling, Heinz / Huybrechts, Inge / Overvad, Kim / Trichopoulou, Antonia / Bamia, Christina / Vasilopoulou, Effie / Wareham, Nick / Khaw, Kay-Tee / Cross, Amanda J / Ward, Heather A / Riboli, Elio / Duell, Eric J. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. · Andalusian School of Public Health, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Global eHealth Unit, Department of Primary Care and Public Health, The School of Public Health, Imperial College London, London, UK. · Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP Generations and Health Team, INSERM, Villejuif, France. · Gustave Roussy, Villejuif F-94805, France. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Department of Internal Medicine, Skane University Hospital, Malmö, Sweden. · Department of Clinical Sciences, Lund University, Malmö, Sweden. · Danish Cancer Society Research Center, Unit of Diet, Genes and Environment, Copenhagen, Denmark. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Cancer Registry and Histopathology Unit, 'Civic-M.P.Arezzo' Hospital, ASP Ragusa, Ragusa, Italy. · Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France. · Department of Public Health, Section of Epidemiology, Aarhus University, Aarhus, Denmark. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece. · Medical Research Council (MCR), Epidemiology Unit, Cambridge, UK. · University of Cambridge, School of Clinical Medicine, Cambridge, UK. ·Br J Cancer · Pubmed #28170373.

ABSTRACT: BACKGROUND: The Mediterranean diet (MD) has been proposed as a means for cancer prevention, but little evidence has been accrued regarding its potential to prevent pancreatic cancer. We investigated the association between the adherence to the MD and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS: Over half a million participants from 10 European countries were followed up for over 11 years, after which 865 newly diagnosed exocrine pancreatic cancer cases were identified. Adherence to the MD was estimated through an adapted score without the alcohol component (arMED) to discount alcohol-related harmful effects. Cox proportional hazards regression models, stratified by age, sex and centre, and adjusted for energy intake, body mass index, smoking status, alcohol intake and diabetes status at recruitment, were used to estimate hazard ratios (HRs) associated with pancreatic cancer and their corresponding 95% confidence intervals (CIs). RESULTS: Adherence to the arMED score was not associated with risk of pancreatic cancer (HR high vs low adherence=0.99; 95% CI: 0.77-1.26, and HR per increments of two units in adherence to arMED=1.00; 95% CI: 0.94-1.06). There was no convincing evidence for heterogeneity by smoking status, body mass index, diabetes or European region. There was also no evidence of significant associations in analyses involving microscopically confirmed cases, plausible reporters of energy intake or other definitions of the MD pattern. CONCLUSIONS: A high adherence to the MD is not associated with pancreatic cancer risk in the EPIC study.

6 Article Sweet-beverage consumption and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). 2016

Navarrete-Muñoz, Eva M / Wark, Petra A / Romaguera, Dora / Bhoo-Pathy, Nirmala / Michaud, Dominique / Molina-Montes, Esther / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Boutron-Ruault, Marie-Christine / Clavel-Chapelon, Françoise / Fagherazzi, Guy / Katzke, Verena A / Kühn, Tilman / Steffen, Annika / Trichopoulou, Antonia / Klinaki, Eleni / Papatesta, Eleni-Maria / Masala, Giovanna / Krogh, Vittorio / Tumino, Rosario / Naccarati, Alessio / Mattiello, Amalia / Peeters, Petra H / Rylander, Charlotta / Parr, Christine L / Skeie, Guri / Weiderpass, Elisabete / Quirós, J Ramón / Duell, Eric J / Dorronsoro, Miren / Huerta, José María / Ardanaz, Eva / Wareham, Nick / Khaw, Kay-Tee / Travis, Ruth C / Key, Tim / Stepien, Magdalena / Freisling, Heinz / Riboli, Elio / Bueno-de-Mesquita, H Bas. ·Department of Public Health, Faculty of Medicine, Miguel Hernández University, Alicante, Spain; The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; · Global eHealth Unit, Department of Primary Care and Public Health. · Department of Epidemiology and Biostatistics, and The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain; Medical Research Institute of Palma, University Hospital Son Espases, Palma de Mallorca, Spain; mariaadoracion.romaguera@ssib.es. · Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; · Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Andalusian School of Public Health. Biomedical Research Institute of Granada; University Hospital of Granada/Granada University, Granada, Spain; · Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen Ø, Denmark; · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark; · Centre for Research in Epidemiology and Population Health, U1018, Nutrition, Hormones and Women's Health team, National Institute for Health and Medical Research, Villejuif, France; UMRS 1018, Université Paris Sud, Villejuif, France; Institut Gustave Roussy, Villejuif, France; · Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany; · Hellenic Health Foundation, Athens, Greece; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; · Hellenic Health Foundation, Athens, Greece; · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy; · Epidemiology and Prevention Unit. Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy; · Human Genetics Foundation,Torino, Molecular and Genetic Epidemiology Unit, Torino, Italy; · Dipartamento di Medicina Clinica e Chirurgia, Federico II University of Naples, Naples, Italy; · MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands; · Department of Community Medicine, University of Tromsø-the Arctic University of Norway, Tromsø, Norway; · Department of Chronic Diseases, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; · Department of Community Medicine, University of Tromsø-the Arctic University of Norway, Tromsø, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Samfundet Folkhälsan, Helsinki, Finland; · Public Health Directorate, Asturias, Spain; · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Public Health Direction Biodonostia Basque Regional Health Department, San Sebastian, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Navarre Public Health Institute, Pamplona, Spain; · Medical Research Council Epidemiology Unit. · Department of Public Health and Primary Care, and Clinical Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; · Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France; · Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, Netherlands; and. · Department of Epidemiology and Biostatistics, and. · Department of Epidemiology and Biostatistics, and Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, Netherlands; and Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, Netherlands. ·Am J Clin Nutr · Pubmed #27510540.

ABSTRACT: BACKGROUND: The consumption of sweet beverages has been associated with greater risk of type 2 diabetes and obesity, which may be involved in the development of pancreatic cancer. Therefore, it has been hypothesized that sweet beverages may increase pancreatic cancer risk as well. OBJECTIVE: We examined the association between sweet-beverage consumption (including total, sugar-sweetened, and artificially sweetened soft drink and juice and nectar consumption) and pancreatic cancer risk. DESIGN: The study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. A total of 477,199 participants (70.2% women) with a mean age of 51 y at baseline were included, and 865 exocrine pancreatic cancers were diagnosed after a median follow-up of 11.60 y (IQR: 10.10-12.60 y). Sweet-beverage consumption was assessed with the use of validated dietary questionnaires at baseline. HRs and 95% CIs were obtained with the use of multivariable Cox regression models that were stratified by age, sex, and center and adjusted for educational level, physical activity, smoking status, and alcohol consumption. Associations with total soft-drink consumption were adjusted for juice and nectar consumption and vice versa. RESULTS: Total soft-drink consumption (HR per 100 g/d: 1.03; 95% CI: 0.99, 1.07), sugar-sweetened soft-drink consumption (HR per 100 g/d: 1.02; 95% CI: 0.97, 1.08), and artificially sweetened soft-drink consumption (HR per 100 g/d: 1.04; 95% CI: 0.98, 1.10) were not associated with pancreatic cancer risk. Juice and nectar consumption was inversely associated with pancreatic cancer risk (HR per 100 g/d: 0.91; 95% CI: 0.84, 0.99); this association remained statistically significant after adjustment for body size, type 2 diabetes, and energy intake. CONCLUSIONS: Soft-drink consumption does not seem to be associated with pancreatic cancer risk. Juice and nectar consumption might be associated with a modest decreased pancreatic cancer risk. Additional studies with specific information on juice and nectar subtypes are warranted to clarify these results.

7 Article Flavonoid and lignan intake and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2016

Molina-Montes, Esther / Sánchez, María-José / Zamora-Ros, Raul / Bueno-de-Mesquita, H B As / Wark, Petra A / Obon-Santacana, Mireia / Kühn, Tilman / Katzke, Verena / Travis, Ruth C / Ye, Weimin / Sund, Malin / Naccarati, Alessio / Mattiello, Amalia / Krogh, Vittorio / Martorana, Caterina / Masala, Giovanna / Amiano, Pilar / Huerta, José-María / Barricarte, Aurelio / Quirós, José-Ramón / Weiderpass, Elisabete / Angell Åsli, Lene / Skeie, Guri / Ericson, Ulrika / Sonestedt, Emily / Peeters, Petra H / Romieu, Isabelle / Scalbert, Augustin / Overvad, Kim / Clemens, Matthias / Boeing, Heiner / Trichopoulou, Antonia / Peppa, Eleni / Vidalis, Pavlos / Khaw, Kay-Tee / Wareham, Nick / Olsen, Anja / Tjønneland, Anne / Boutroun-Rualt, Marie-Christine / Clavel-Chapelon, Françoise / Cross, Amanda J / Lu, Yunxia / Riboli, Elio / Duell, Eric J. ·Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, GRANADA, Hospitales Universitarios De Granada/Universidad De Granada, Granada, Spain. · CIBERESP, CIBER Epidemiología Y Salud Pública, Spain. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, the School of Public Health, Imperial College London, London, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Global eHealth Unit, Department of Primary Care and Public Health, the School of Public Health, Imperial College London, London, United Kingdom. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Molecular and Genetic Epidemiology Unit, HuGeF-Human Genetics Foundation, Torino, Italy. · Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. · Cancer Registry ASP, Ragusa, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Public Health Institute of Navarra, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, the Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece. · University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Epidemiology Unit, Medical Research Council, Cambridge, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Inserm, CESP Centre for Research in Epidemiology and Population Health, France. ·Int J Cancer · Pubmed #27184434.

ABSTRACT: Despite the potential cancer preventive effects of flavonoids and lignans, their ability to reduce pancreatic cancer risk has not been demonstrated in epidemiological studies. Our aim was to examine the association between dietary intakes of flavonoids and lignans and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A total of 865 exocrine pancreatic cancer cases occurred after 11.3 years of follow-up of 477,309 cohort members. Dietary flavonoid and lignan intake was estimated through validated dietary questionnaires and the US Department of Agriculture (USDA) and Phenol Explorer databases. Hazard ratios (HR) and 95% confidence intervals (CIs) were calculated using age, sex and center-stratified Cox proportional hazards models, adjusted for energy intake, body mass index (BMI), smoking, alcohol and diabetes status. Our results showed that neither overall dietary intake of flavonoids nor of lignans were associated with pancreatic cancer risk (multivariable-adjusted HR for a doubling of intake = 1.03, 95% CI: 0.95-1.11 and 1.02; 95% CI: 0.89-1.17, respectively). Statistically significant associations were also not observed by flavonoid subclasses. An inverse association between intake of flavanones and pancreatic cancer risk was apparent, without reaching statistical significance, in microscopically confirmed cases (HR for a doubling of intake = 0.96, 95% CI: 0.91-1.00). In conclusion, we did not observe an association between intake of flavonoids, flavonoid subclasses or lignans and pancreatic cancer risk in the EPIC cohort.

8 Article Plasma carotenoids, vitamin C, retinol and tocopherols levels and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition: a nested case-control study: plasma micronutrients and pancreatic cancer risk. 2015

Jeurnink, Suzanne M / Ros, Martine M / Leenders, Max / van Duijnhoven, Franzel J B / Siersema, Peter D / Jansen, Eugene H J M / van Gils, Carla H / Bakker, Marije F / Overvad, Kim / Roswall, Nina / Tjønneland, Anne / Boutron-Ruault, Marie-Christine / Racine, Antoine / Cadeau, Claire / Grote, Verena / Kaaks, Rudolf / Aleksandrova, Krasimira / Boeing, Heiner / Trichopoulou, Antonia / Benetou, Vasiliki / Valanou, Elisavet / Palli, Domenico / Krogh, Vittorio / Vineis, Paolo / Tumino, Rosario / Mattiello, Amalia / Weiderpass, Elisabete / Skeie, Guri / Castaño, José María Huerta / Duell, Eric J / Barricarte, Aurelio / Molina-Montes, Esther / Argüelles, Marcial / Dorronsoro, Mire / Johansen, Dorthe / Lindkvist, Björn / Sund, Malin / Crowe, Francesca L / Khaw, Kay-Tee / Jenab, Mazda / Fedirko, Veronika / Riboli, E / Bueno-de-Mesquita, H B. ·Department of Gastroenterology and Hepatology, University Medical Center Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. ·Int J Cancer · Pubmed #25175624.

ABSTRACT: Evidence of a protective effect of several antioxidants and other nutrients on pancreatic cancer risk is inconsistent. The aim of this study was to investigate the association for prediagnostic plasma levels of carotenoids, vitamin C, retinol and tocopherols with risk of pancreatic cancer in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). 446 incident exocrine pancreatic cancer cases were matched to 446 controls by age at blood collection, study center, sex, date and time of blood collection, fasting status and hormone use. Plasma carotenoids (α- and β-carotene, lycopene, β-cryptoxanthin, canthaxanthin, zeaxanthin and lutein), α- and γ-tocopherol and retinol were measured by reverse phase high-performance liquid chromatography and plasma vitamin C by a colorimetric assay. Incidence rate ratios (IRRs) with 95% confidence intervals (95%CIs) for pancreatic cancer risk were estimated using a conditional logistic regression analysis, adjusted for smoking status, smoking duration and intensity, waist circumference, cotinine levels and diabetes status. Inverse associations with pancreatic cancer risk were found for plasma β-carotene (IRR highest vs. lowest quartile 0.52, 95%CI 0.31-0.88, p for trend = 0.02), zeaxanthin (IRR highest vs. lowest quartile 0.53, 95%CI 0.30-0.94, p for trend = 0.06) and α-tocopherol (IRR highest vs. lowest quartile 0.62, 95%CI 0.39-0.99, p for trend = 0.08. For α- and β-carotene, lutein, sum of carotenoids and γ-tocopherol, heterogeneity between geographical regions was observed. In conclusion, our results show that higher plasma concentrations of β-carotene, zeaxanthin and α-tocopherol may be inversely associated with risk of pancreatic cancer, but further studies are warranted.

9 Article Dietary intake of acrylamide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. 2013

Obón-Santacana, M / Slimani, N / Lujan-Barroso, L / Travier, N / Hallmans, G / Freisling, H / Ferrari, P / Boutron-Ruault, M C / Racine, A / Clavel, F / Saieva, C / Pala, V / Tumino, R / Mattiello, A / Vineis, P / Argüelles, M / Ardanaz, E / Amiano, P / Navarro, C / Sánchez, M J / Molina Montes, E / Key, T / Khaw, K-T / Wareham, N / Peeters, P H / Trichopoulou, A / Bamia, C / Trichopoulos, D / Boeing, H / Kaaks, R / Katzke, V / Ye, W / Sund, M / Ericson, U / Wirfält, E / Overvad, K / Tjønneland, A / Olsen, A / Skeie, G / Åsli, L A / Weiderpass, E / Riboli, E / Bueno-de-Mesquita, H B / Duell, E J. ·Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. ·Ann Oncol · Pubmed #23857962.

ABSTRACT: BACKGROUND: In 1994, acrylamide (AA) was classified as a probable human carcinogen by the International Agency for Research on Cancer. In 2002, AA was discovered at relatively high concentrations in some starchy, plant-based foods cooked at high temperatures. PATIENTS AND METHODS: A prospective analysis was conducted to evaluate the association between the dietary intake of AA and ductal adenocarcinoma of the exocrine pancreatic cancer (PC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort using Cox regression modeling. EPIC includes >500,000 men and women aged 35-75 at enrollment from 10 European countries. AA intake was estimated for each participant by combining questionnaire-based food consumption data with a harmonized AA database derived from the EU monitoring database of AA levels in foods, and evaluated in quintiles and continuously. RESULTS: After a mean follow-up of 11 years, 865 first incident adenocarcinomas of the exocrine pancreas were observed and included in the present analysis. At baseline, the mean dietary AA intake in EPIC was 26.22 µg/day. No overall association was found between continuous or quintiles of dietary AA intake and PC risk in EPIC (HR:0.95, 95%CI:0.89-1.01 per 10 µg/day). There was no effect measure modification by smoking status, sex, diabetes, alcohol intake or geographic region. However, there was an inverse association (HR: 0.73, 95% CI: 0.61-0.88 per 10 µg/day) between AA intake and PC risk in obese persons as defined using the body mass index (BMI, ≥ 30 kg/m(2)), but not when body fatness was defined using waist and hip circumference or their ratio. CONCLUSIONS: Dietary intake of AA was not associated with an increased risk of PC in the EPIC cohort.

10 Article Intake of coffee, decaffeinated coffee, or tea does not affect risk for pancreatic cancer: results from the European Prospective Investigation into Nutrition and Cancer Study. 2013

Bhoo-Pathy, Nirmala / Uiterwaal, Cuno S P M / Dik, Vincent K / Jeurnink, Suzanne M / Bech, Bodil H / Overvad, Kim / Halkjær, Jytte / Tjønneland, Anne / Boutron-Ruault, Marie-Christine / Fagherazzi, Guy / Racine, Antoine / Katzke, Verena A / Li, Kuanrong / Boeing, Heiner / Floegel, Anna / Androulidaki, Anna / Bamia, Christina / Trichopoulou, Antonia / Masala, Giovanna / Panico, Salvatore / Crosignani, Paolo / Tumino, Rosario / Vineis, Paolo / Peeters, Petra H M / Gavrilyuk, Oxana / Skeie, Guri / Weiderpass, Elisabete / Duell, Eric J / Arguelles, Marcial / Molina-Montes, Esther / Navarro, Carmen / Ardanaz, Eva / Dorronsoro, Miren / Lindkvist, Björn / Wallström, Peter / Sund, Malin / Ye, Weimin / Khaw, Kay-Tee / Wareham, Nick / Key, Timothy J / Travis, Ruth C / Duarte-Salles, Talita / Freisling, Heinz / Licaj, Idlir / Gallo, Valentina / Michaud, Dominique S / Riboli, Elio / Bueno-De-Mesquita, H Bas. ·Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; National Clinical Research Centre, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia. ·Clin Gastroenterol Hepatol · Pubmed #23756220.

ABSTRACT: BACKGROUND & AIMS: Few modifiable risk factors have been implicated in the etiology of pancreatic cancer. There is little evidence for the effects of caffeinated coffee, decaffeinated coffee, or tea intake on risk of pancreatic cancer. We investigated the association of total coffee, caffeinated coffee, decaffeinated coffee, and tea consumption with risk of pancreatic cancer. METHODS: This study was conducted within the European Prospective Investigation into Nutrition and Cancer cohort, comprising male and female participants from 10 European countries. Between 1992 and 2000, there were 477,312 participants without cancer who completed a dietary questionnaire and were followed up to determine pancreatic cancer incidence. Coffee and tea intake was calibrated with a 24-hour dietary recall. Adjusted hazard ratios (HRs) were computed using multivariable Cox regression. RESULTS: During a mean follow-up period of 11.6 y, 865 first incidences of pancreatic cancers were reported. When divided into fourths, neither total intake of coffee (HR, 1.03; 95% confidence interval [CI], 0.83-1.27; high vs low intake), decaffeinated coffee (HR, 1.12; 95% CI, 0.76-1.63; high vs low intake), nor tea were associated with risk of pancreatic cancer (HR, 1.22, 95% CI, 0.95-1.56; high vs low intake). Moderately low intake of caffeinated coffee was associated with an increased risk of pancreatic cancer (HR, 1.33; 95% CI, 1.02-1.74), compared with low intake. However, no graded dose response was observed, and the association attenuated after restriction to histologically confirmed pancreatic cancers. CONCLUSIONS: Based on an analysis of data from the European Prospective Investigation into Nutrition and Cancer cohort, total coffee, decaffeinated coffee, and tea consumption are not related to the risk of pancreatic cancer.

11 Article Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. 2013

Rohrmann, Sabine / Linseisen, Jakob / Nöthlings, Ute / Overvad, Kim / Egeberg, Rikke / Tjønneland, Anne / Boutron-Ruault, Marie Christine / Clavel-Chapelon, Françoise / Cottet, Vanessa / Pala, Valeria / Tumino, Rosario / Palli, Domenico / Panico, Salvatore / Vineis, Paolo / Boeing, Heiner / Pischon, Tobias / Grote, Verena / Teucher, Birigit / Khaw, Kay-Tee / Wareham, Nicholas J / Crowe, Francesca L / Goufa, Ioulia / Orfanos, Philippos / Trichopoulou, Antonia / Jeurnink, Suzanne M / Siersema, Peter D / Peeters, Petra H M / Brustad, Magritt / Engeset, Dagrun / Skeie, Guri / Duell, Eric J / Amiano, Pilar / Barricarte, Aurelio / Molina-Montes, Esther / Rodríguez, Laudina / Tormo, María-José / Sund, Malin / Ye, Weimin / Lindkvist, Björn / Johansen, Dorthe / Ferrari, Pietro / Jenab, Mazda / Slimani, Nadia / Ward, Heather / Riboli, Elio / Norat, Teresa / Bueno-de-Mesquita, H Bas. ·Division of Cancer Epidemiology and Prevention, Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland. sabine.rohrmann@ifspm.uzh.ch ·Int J Cancer · Pubmed #22610753.

ABSTRACT: Pancreatic cancer is the fourth most common cause of cancer death worldwide with large geographical variation, which implies the contribution of diet and lifestyle in its etiology. We examined the association of meat and fish consumption with risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). A total of 477,202 EPIC participants from 10 European countries recruited between 1992 and 2000 were included in our analysis. Until 2008, 865 nonendocrine pancreatic cancer cases have been observed. Calibrated relative risks (RRs) and 95% confidence intervals (CIs) were computed using multivariable-adjusted Cox hazard regression models. The consumption of red meat (RR per 50 g increase per day = 1.03, 95% CI = 0.93-1.14) and processed meat (RR per 50 g increase per day = 0.93, 95% CI = 0.71-1.23) were not associated with an increased pancreatic cancer risk. Poultry consumption tended to be associated with an increased pancreatic cancer risk (RR per 50 g increase per day = 1.72, 95% CI = 1.04-2.84); however, there was no association with fish consumption (RR per 50 g increase per day = 1.22, 95% CI = 0.92-1.62). Our results do not support the conclusion of the World Cancer Research Fund that red or processed meat consumption may possibly increase the risk of pancreatic cancer. The positive association of poultry consumption with pancreatic cancer might be a chance finding as it contradicts most previous findings.

12 Article Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2012

Molina-Montes, Esther / Wark, Petra A / Sánchez, María-José / Norat, Teresa / Jakszyn, Paula / Luján-Barroso, Leila / Michaud, Dominique S / Crowe, Francesca / Allen, Naomi / Khaw, Kay-Tee / Wareham, Nicholas / Trichopoulou, Antonia / Adarakis, George / Katarachia, Helen / Skeie, Guri / Henningsen, Maria / Broderstad, Ann Ragnhild / Berrino, Franco / Tumino, Rosario / Palli, Domenico / Mattiello, Amalia / Vineis, Paolo / Amiano, Pilar / Barricarte, Aurelio / Huerta, José-María / Duell, Eric J / Quirós, José-Ramón / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Overvad, Kim / Tjønneland, Anne / Roswall, Nina / Li, Kuanrong / Grote, Verena A / Steffen, Annika / Boeing, Heiner / Racine, Antoine / Boutron-Ruault, Marie-Christine / Carbonnel, Franck / Peeters, Petra H M / Siersema, Peter D / Fedirko, Veronika / Jenab, Mazda / Riboli, Elio / Bueno-de-Mesquita, Bas. ·Andalusian School of Public Health. Granada Cancer Registry, Spain. ·Int J Cancer · Pubmed #22438075.

ABSTRACT: Several studies support a protective effect of dietary magnesium against type 2 diabetes, but a harmful effect for iron. As diabetes has been linked to pancreatic cancer, intake of these nutrients may be also associated with this cancer. We examined the association between dietary intake of magnesium, total iron and heme-iron and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. In total, 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After an average follow-up of 11.3 years, 396 men and 469 women developed exocrine pancreatic cancer. Hazard ratios and 95% confidence intervals (CIs) were obtained using Cox regression stratified by age and center, and adjusted for energy intake, smoking status, height, weight, and self-reported diabetes status. Neither intake of magnesium, total iron nor heme-iron was associated with pancreatic cancer risk. In stratified analyses, a borderline inverse association was observed among overweight men (body mass index, ≥ 25 kg/m(2) ) with magnesium (HR(per 100 mg/day increase) = 0.79, 95% CI = 0.63-1.01) although this was less apparent using calibrated intake. In female smokers, a higher intake of heme-iron was associated with a higher pancreatic cancer risk (HR (per 1 mg/day increase) = 1.38, 95% CI = 1.10-1.74). After calibration, this risk increased significantly to 2.5-fold (95% CI = 1.22-5.28). Overall, dietary magnesium, total iron and heme-iron were not associated with pancreatic cancer risk during the follow-up period. Our observation that heme-iron was associated with increased pancreatic cancer risk in female smokers warrants replication in additional study populations.

13 Article A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. 2011

Chuang, Shu-Chun / Stolzenberg-Solomon, Rachael / Ueland, Per Magne / Vollset, Stein Emil / Midttun, Øivind / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Boutron-Ruault, Marie-Christine / Morois, Sophie / Clavel-Chapelon, Françoise / Teucher, Birgit / Kaaks, Rudolf / Weikert, Cornelia / Boeing, Heiner / Trichopoulou, Antonia / Benetou, Vassiliki / Naska, Androniki / Jenab, Mazda / Slimani, Nadia / Romieu, Isabelle / Michaud, Dominique S / Palli, Domenico / Sieri, Sabina / Panico, Salvatore / Sacerdote, Carlotta / Tumino, Rosario / Skeie, Guri / Duell, Eric J / Rodriguez, Laudina / Molina-Montes, Esther / Huerta, José Marı A / Larrañaga, Nerea / Gurrea, Aurelio Barricarte / Johansen, Dorthe / Manjer, Jonas / Ye, Weimin / Sund, Malin / Peeters, Petra H M / Jeurnink, Suzanne / Wareham, Nicholas / Khaw, Kay-Tee / Crowe, Francesca / Riboli, Elio / Bueno-de-Mesquita, Bas / Vineis, Paolo. ·School of Public Health, Imperial College London, London, UK. ·Eur J Cancer · Pubmed #21411310.

ABSTRACT: Folate intake has shown an inverse association with pancreatic cancer; nevertheless, results from plasma measurements were inconsistent. The aim of this study is to examine the association between plasma total homocysteine, methionine, folate, cobalamin, pyridoxal 5'-phosphate, riboflavin, flavin mononucleotide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). We conducted a nested case-control study in the EPIC cohort, which has an average of 9.6 years of follow-up (1992-2006), using 463 incident pancreatic cancer cases. Controls were matched to each case by center, sex, age (± 1 year), date (± 1 year) and time (± 3 h) at blood collection and fasting status. Conditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence intervals (CI), adjusting for education, smoking status, plasma cotinine concentration, alcohol drinking, body mass index and diabetes status. We observed a U-shaped association between plasma folate and pancreatic cancer risk. The ORs for plasma folate ≤ 5, 5-10, 10-15 (reference), 15-20, and > 20 nmol/L were 1.58 (95% CI=0.72-3.46), 1.39 (0.93-2.08), 1.0 (reference), 0.79 (0.52-1.21), and 1.34 (0.89-2.02), respectively. Methionine was associated with an increased risk in men (per quintile increment: OR=1.17, 95% CI=1.00-1.38) but not in women (OR=0.91, 95% CI=0.78-1.07; p for heterogeneity <0.01). Our results suggest a U-shaped association between plasma folate and pancreatic cancer risk in both men and women. The positive association that we observed between methionine and pancreatic cancer may be sex dependent and may differ by time of follow-up. However, the mechanisms behind the observed associations warrant further investigation.