Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Skye H. Simpson
Based on 2 articles published since 2010
(Why 2 articles?)
||||

Between 2010 and 2020, Skye Simpson wrote the following 2 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Clinical Trial Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. 2015

Chantrill, Lorraine A / Nagrial, Adnan M / Watson, Clare / Johns, Amber L / Martyn-Smith, Mona / Simpson, Skye / Mead, Scott / Jones, Marc D / Samra, Jaswinder S / Gill, Anthony J / Watson, Nicole / Chin, Venessa T / Humphris, Jeremy L / Chou, Angela / Brown, Belinda / Morey, Adrienne / Pajic, Marina / Grimmond, Sean M / Chang, David K / Thomas, David / Sebastian, Lucille / Sjoquist, Katrin / Yip, Sonia / Pavlakis, Nick / Asghari, Ray / Harvey, Sandra / Grimison, Peter / Simes, John / Biankin, Andrew V / Anonymous5550827 / Anonymous5560827. ·The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Macarthur Cancer Therapy Centre, Campbelltown, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. andrew.biankin@glasgow.ac.uk l.chantrill@garvan.org.au. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. Crown Princess Mary Cancer Centre, Westmead, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Prince of Wales Hospital, Randwick, New South Wales, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. · University of Sydney, New South Wales, Australia. Macquarie University Hospital, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. Department of Surgery, Bankstown Hospital, Sydney, New South Wales, Australia. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. · NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. · Northern Sydney Cancer Centre, Royal North Shore Hospital, New South Wales, Australia. · Bankstown Cancer Centre, Bankstown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. Department of Surgery, Bankstown Hospital, Sydney, New South Wales, Australia. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. andrew.biankin@glasgow.ac.uk l.chantrill@garvan.org.au. ·Clin Cancer Res · Pubmed #25896973.

ABSTRACT: PURPOSE: Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies. EXPERIMENTAL DESIGN: The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM). RESULTS: Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study. CONCLUSIONS: Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options.

2 Article Clinical and pathologic features of familial pancreatic cancer. 2014

Humphris, Jeremy L / Johns, Amber L / Simpson, Skye H / Cowley, Mark J / Pajic, Marina / Chang, David K / Nagrial, Adnan M / Chin, Venessa T / Chantrill, Lorraine A / Pinese, Mark / Mead, R Scott / Gill, Anthony J / Samra, Jaswinder S / Kench, James G / Musgrove, Elizabeth A / Tucker, Katherine M / Spigelman, Allan D / Waddell, Nic / Grimmond, Sean M / Biankin, Andrew V / Anonymous2030809. ·The Kinghorn Cancer Center, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ·Cancer · Pubmed #25313458.

ABSTRACT: BACKGROUND: Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC). METHODS: Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC). Patients were classified with FPC if they had ≥1 affected first-degree relatives; otherwise, they were classified with sporadic PC (SPC). RESULTS: The prevalence of FPC in this cohort was 8.9%. In FPC families with an affected parent-child pair, 71% in the subsequent generation were 12.3 years younger at diagnosis. Patients with FPC had more first-degree relatives who had an extrapancreatic malignancy (EPM) (42.6% vs 21.2; P<.0001), particularly melanoma and endometrial cancer, but not a personal history of EPM. Patients with SPC were more likely to be active smokers, have higher cumulative tobacco exposure, and have fewer multifocal precursor lesions, but these were not associated with differences in survival. Long-standing diabetes mellitus (>2 years) was associated with poor survival in both groups. CONCLUSIONS: FPC represents 9% of PC, and the risk of malignancy in kindred does not appear to be confined to the pancreas. Patients with FPC have more precursor lesions and include fewer active smokers, but other clinicopathologic factors and outcome are similar to those in patients with SPC. Furthermore, some FPC kindreds may exhibit anticipation. A better understanding of the clinical features of PC will facilitate efforts to uncover novel susceptibility genes and the development of early detection strategies.