Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Michele Simbolo
Based on 4 articles published since 2010
(Why 4 articles?)
||||

Between 2010 and 2020, Michele Simbolo wrote the following 4 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Perineural Invasion is a Strong Prognostic Moderator in Ampulla of Vater Carcinoma: A Meta-analysis. 2019

Luchini, Claudio / Veronese, Nicola / Nottegar, Alessia / Riva, Giulio / Pilati, Camilla / Mafficini, Andrea / Stubbs, Brendon / Simbolo, Michele / Mombello, Aldo / Corbo, Vincenzo / Cheng, Liang / Yachida, Shinichi / Wood, Laura D / Lawlor, Rita T / Salvia, Roberto / Scarpa, Aldo. ·National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis," Castellana Grotte, Bari. · Department of Surgery, Section of Pathology, San Bortolo Hospital, Vicenza, Italy. · Personalized Medicine, Pharmacogenomics, Therapeutic Optimization, Paris-Descartes University, Paris, France. · ARC-Net Research Center, University of Verona, Verona, Italy. · Health Service and Population Research Department, King's College London, London, United Kingdom. · Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN. · Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. · Department of General and Pancreatic Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy. ·Pancreas · Pubmed #30451797.

ABSTRACT: OBJECTIVE: Ampulla of Vater carcinoma (AVC) has a broad spectrum of different prognoses. As such, new moderators of survival are urgently needed. We aimed at clarifying the prognostic role of perineural invasion in AVC. METHODS: Using PubMed and SCOPUS databases, we conducted the first systematic review and meta-analysis on this topic. RESULTS: Analyzing 29 articles for a total of 2379 patients, we found that the presence of perineural invasion increased the risk of all-cause mortality more than 2 times (relative risk [RR], 2.07; 95% confidence interval [CI], 1.78-2.42 [P < 0.0001]; hazard ratio [HR], 2.72; 95% CI, 1.86-3.97 [P < 0.0001]), of cancer-specific mortality more than 6 times (RR, 6.12; 95% CI, 3.25-11.54 [P < 0.0001]; HR, 6.59; 95% CI, 2.29-3.49 [P < 0.0001]), and of recurrence more than 2 times (RR, 2.63; 95% CI, 1.89-3.67 [P < 0.0001]; HR, 2.54; 95% CI, 1.24-5.21 [P = 0.01]). CONCLUSIONS: Perineural invasion is strongly associated with a poorer prognosis in AVC, influencing both survival and risk of recurrence. It should be reported in the final pathology report and should be taken into account by future oncologic staging systems, identifying a group of AVC with a more malignant biological behavior.

2 Article Molecular alterations associated with metastases of solid pseudopapillary neoplasms of the pancreas. 2019

Amato, Eliana / Mafficini, Andrea / Hirabayashi, Kenichi / Lawlor, Rita T / Fassan, Matteo / Vicentini, Caterina / Barbi, Stefano / Delfino, Pietro / Sikora, Katarzyna / Rusev, Borislav / Simbolo, Michele / Esposito, Irene / Antonello, Davide / Pea, Antonio / Sereni, Elisabetta / Ballotta, Maria / Maggino, Laura / Marchegiani, Giovanni / Ohike, Nobuyuki / Wood, Laura D / Salvia, Roberto / Klöppel, Günter / Zamboni, Giuseppe / Scarpa, Aldo / Corbo, Vincenzo. ·ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy. · Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, Tokai University School of Medicine, Isehara, Japan. · Institute of Pathology, Heinrich-Heine-University and University Hospital of Düsseldorf, Düsseldorf, Germany. · Department of Surgery, General Surgery B, University of Verona, Verona, Italy. · Section of Anatomic Pathology, Azienda Ospedaliera Rovigo, Rovigo, Italy. · Department of Pathology and Laboratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. · Department of Pathology, Technical University Munich, Munich, Germany. · Division of Pathology, Sacro Cuore-Don Calabria Hospital, Negrar, Italy. ·J Pathol · Pubmed #30306561.

ABSTRACT: Solid pseudopapillary neoplasms (SPN) of the pancreas are rare, low-grade malignant neoplasms that metastasise to the liver or peritoneum in 10-15% of cases. They almost invariably present somatic activating mutations of CTNNB1. No comprehensive molecular characterisation of metastatic disease has been conducted to date. We performed whole-exome sequencing and copy-number variation (CNV) analysis of 10 primary SPN and comparative sequencing of five matched primary/metastatic tumour specimens by high-coverage targeted sequencing of 409 genes. In addition to CTNNB1-activating mutations, we found inactivating mutations of epigenetic regulators (KDM6A, TET1, BAP1) associated with metastatic disease. Most of these alterations were shared between primary and metastatic lesions, suggesting that they occurred before dissemination. Differently from mutations, the majority of CNVs were not shared among lesions from the same patients and affected genes involved in metabolic and pro-proliferative pathways. Immunostaining of 27 SPNs showed that loss or reduction of KDM6A and BAP1 expression was significantly enriched in metastatic SPNs. Consistent with an increased transcriptional response to hypoxia in pancreatic adenocarcinomas bearing KDM6A inactivation, we showed that mutation or reduced KDM6A expression in SPNs is associated with increased expression of the HIF1α-regulated protein GLUT1 at both primary and metastatic sites. Our results suggest that BAP1 and KDM6A function is a barrier to the development of metastasis in a subset of SPNs, which might open novel avenues for the treatment of this disease. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

3 Article Whole-genome landscape of pancreatic neuroendocrine tumours. 2017

Scarpa, Aldo / Chang, David K / Nones, Katia / Corbo, Vincenzo / Patch, Ann-Marie / Bailey, Peter / Lawlor, Rita T / Johns, Amber L / Miller, David K / Mafficini, Andrea / Rusev, Borislav / Scardoni, Maria / Antonello, Davide / Barbi, Stefano / Sikora, Katarzyna O / Cingarlini, Sara / Vicentini, Caterina / McKay, Skye / Quinn, Michael C J / Bruxner, Timothy J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / McLean, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Wilson, Peter J / Anderson, Matthew J / Fink, J Lynn / Newell, Felicity / Waddell, Nick / Holmes, Oliver / Kazakoff, Stephen H / Leonard, Conrad / Wood, Scott / Xu, Qinying / Nagaraj, Shivashankar Hiriyur / Amato, Eliana / Dalai, Irene / Bersani, Samantha / Cataldo, Ivana / Dei Tos, Angelo P / Capelli, Paola / Davì, Maria Vittoria / Landoni, Luca / Malpaga, Anna / Miotto, Marco / Whitehall, Vicki L J / Leggett, Barbara A / Harris, Janelle L / Harris, Jonathan / Jones, Marc D / Humphris, Jeremy / Chantrill, Lorraine A / Chin, Venessa / Nagrial, Adnan M / Pajic, Marina / Scarlett, Christopher J / Pinho, Andreia / Rooman, Ilse / Toon, Christopher / Wu, Jianmin / Pinese, Mark / Cowley, Mark / Barbour, Andrew / Mawson, Amanda / Humphrey, Emily S / Colvin, Emily K / Chou, Angela / Lovell, Jessica A / Jamieson, Nigel B / Duthie, Fraser / Gingras, Marie-Claude / Fisher, William E / Dagg, Rebecca A / Lau, Loretta M S / Lee, Michael / Pickett, Hilda A / Reddel, Roger R / Samra, Jaswinder S / Kench, James G / Merrett, Neil D / Epari, Krishna / Nguyen, Nam Q / Zeps, Nikolajs / Falconi, Massimo / Simbolo, Michele / Butturini, Giovanni / Van Buren, George / Partelli, Stefano / Fassan, Matteo / Anonymous6880896 / Khanna, Kum Kum / Gill, Anthony J / Wheeler, David A / Gibbs, Richard A / Musgrove, Elizabeth A / Bassi, Claudio / Tortora, Giampaolo / Pederzoli, Paolo / Pearson, John V / Waddell, Nicola / Biankin, Andrew V / Grimmond, Sean M. ·ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. · QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · Medical Oncology, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, General Hospital of Treviso, Department of Medicine, University of Padua, Italy. · Department of Medicine, Section of Endocrinology, University and Hospital Trust of Verona, Verona, Italy. · The University of Queensland, School of Medicine, Brisbane 4006, Australia. · Pathology Queensland, Brisbane 4006, Australia. · Royal Brisbane and Women's Hospital, Department of Gastroenterology and Hepatology, Brisbane 4006, Australia. · Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. · School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · Department of Anatomical Pathology. St Vincent's Hospital, Sydney, New South Wales 2010, Australia. · Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. · Department of Pathology, Queen Elizabeth University Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. · Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA. · Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia. · Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. · University of Sydney. Sydney, New South Wales 2006, Australia. · Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · School of Medicine, Western Sydney University, Penrith, New South Wales 2175, Australia. · Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia 6009, Australia. · St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. · Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. · University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, 3010, Victoria, Australia. ·Nature · Pubmed #28199314.

ABSTRACT: The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

4 Article A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. 2015

Sadanandam, Anguraj / Wullschleger, Stephan / Lyssiotis, Costas A / Grötzinger, Carsten / Barbi, Stefano / Bersani, Samantha / Körner, Jan / Wafy, Ismael / Mafficini, Andrea / Lawlor, Rita T / Simbolo, Michele / Asara, John M / Bläker, Hendrik / Cantley, Lewis C / Wiedenmann, Bertram / Scarpa, Aldo / Hanahan, Douglas. ·Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland. Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. Division of Molecular Pathology, Institute of Cancer Research (ICR), London, United Kingdom. anguraj.sadanandam@icr.ac.uk douglas.hanahan@epfl.ch aldo.scarpa@univr.it. · Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. · Meyer Cancer Center, Weill Cornell Medical College, New York, New York. · Department of Hepatology and Gastroenterology, Charite, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany. · ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. · Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts. · Institut für Pathologie, Charite, Campus Virchow-Klinikum, University Medicine, Berlin, Germany. · ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. anguraj.sadanandam@icr.ac.uk douglas.hanahan@epfl.ch aldo.scarpa@univr.it. · Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. anguraj.sadanandam@icr.ac.uk douglas.hanahan@epfl.ch aldo.scarpa@univr.it. ·Cancer Discov · Pubmed #26446169.

ABSTRACT: SIGNIFICANCE: This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy.