Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Daniela Seminara
Based on 4 articles published since 2010
(Why 4 articles?)

Between 2010 and 2020, D. Seminara wrote the following 4 articles about Pancreatic Neoplasms.
+ Citations + Abstracts
1 Article BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. 2015

Zhen, David B / Rabe, Kari G / Gallinger, Steven / Syngal, Sapna / Schwartz, Ann G / Goggins, Michael G / Hruban, Ralph H / Cote, Michele L / McWilliams, Robert R / Roberts, Nicholas J / Cannon-Albright, Lisa A / Li, Donghui / Moyes, Kelsey / Wenstrup, Richard J / Hartman, Anne-Renee / Seminara, Daniela / Klein, Alison P / Petersen, Gloria M. ·Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Divison of General Surgery, University of Toronto, Toronto, Ontario, Canada. · Population Sciences Division, Dana-Farber Cancer Institute, and Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA. · Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan, USA. · The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA. · Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA. · 1] The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA [2] Ludwig Center for Cancer Genetics, Johns Hopkins University, Baltimore, Maryland, USA. · Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. · Myriad Genetic Laboratories, Inc., Salt Lake City, Utah, USA. · Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland, USA. ·Genet Med · Pubmed #25356972.

ABSTRACT: PURPOSE: Familial pancreatic cancer kindreds contain at least two affected first-degree relatives. Comprehensive data are needed to assist clinical risk assessment and genetic testing. METHODS: Germ-line DNA samples from 727 unrelated probands with positive family history (521 met criteria for familial pancreatic cancer) were tested in compliance with the Clinical Laboratory Improvement Amendments for mutations in BRCA1 and BRCA2 (including analysis of deletions and rearrangements), PALB2, and CDKN2A. We compared prevalence of deleterious mutations between familial pancreatic cancer probands and nonfamilial pancreatic cancer probands (kindreds containing at least two affected biological relatives, but not first-degree relatives). We also examined the impact of family history on breast and ovarian cancers and melanoma. RESULTS: Prevalence of deleterious mutations (excluding variants of unknown significance) among familial pancreatic cancer probands was: BRCA1, 1.2%; BRCA2, 3.7%; PALB2, 0.6%; and CDKN2A, 2.5%. Four novel deleterious mutations were detected. Familial pancreatic cancer probands carry more mutations in the four genes (8.0%) than nonfamilial pancreatic cancer probands (3.5%) (odds ratio: 2.40; 95% confidence interval: 1.06-5.44; P = 0.03). The probability of testing positive for deleterious mutations in any of the four genes ranges up to 10.4%, depending on family history of cancers. BRCA2 and CDKN2A account for the majority of mutations in familial pancreatic cancer. CONCLUSION: Genetic testing of multiple relevant genes in probands with a positive family history is warranted, particularly for familial pancreatic cancer.

2 Article Allergies and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium. 2013

Olson, Sara H / Hsu, Meier / Satagopan, Jaya M / Maisonneuve, Patrick / Silverman, Debra T / Lucenteforte, Ersilia / Anderson, Kristin E / Borgida, Ayelet / Bracci, Paige M / Bueno-de-Mesquita, H Bas / Cotterchio, Michelle / Dai, Qi / Duell, Eric J / Fontham, Elizabeth H / Gallinger, Steven / Holly, Elizabeth A / Ji, Bu-Tian / Kurtz, Robert C / La Vecchia, Carlo / Lowenfels, Albert B / Luckett, Brian / Ludwig, Emmy / Petersen, Gloria M / Polesel, Jerry / Seminara, Daniela / Strayer, Lori / Talamini, Renato / Anonymous6300762. ·Department of Epidemiology and Biostatistics, 307 East 63rd Street, New York, NY 10065, USA. olsons@mskcc.org ·Am J Epidemiol · Pubmed #23820785.

ABSTRACT: In order to quantify the risk of pancreatic cancer associated with history of any allergy and specific allergies, to investigate differences in the association with risk according to age, gender, smoking status, or body mass index, and to study the influence of age at onset, we pooled data from 10 case-control studies. In total, there were 3,567 cases and 9,145 controls. Study-specific odds ratios and 95% confidence intervals were calculated by using unconditional logistic regression adjusted for age, gender, smoking status, and body mass index. Between-study heterogeneity was assessed by using the Cochran Q statistic. Study-specific odds ratios were pooled by using a random-effects model. The odds ratio for any allergy was 0.79 (95% confidence interval (CI): 0.62, 1.00) with heterogeneity among studies (P < 0.001). Heterogeneity was attributable to one study; with that study excluded, the pooled odds ratio was 0.73 (95% CI: 0.64, 0.84) (Pheterogeneity = 0.23). Hay fever (odds ratio = 0.74, 95% CI: 0.56, 0.96) and allergy to animals (odds ratio = 0.62, 95% CI: 0.41, 0.94) were related to lower risk, while there was no statistically significant association with other allergies or asthma. There were no major differences among subgroups defined by age, gender, smoking status, or body mass index. Older age at onset of allergies was slightly more protective than earlier age.

3 Article Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). 2012

Duell, E J / Lucenteforte, E / Olson, S H / Bracci, P M / Li, D / Risch, H A / Silverman, D T / Ji, B T / Gallinger, S / Holly, E A / Fontham, E H / Maisonneuve, P / Bueno-de-Mesquita, H B / Ghadirian, P / Kurtz, R C / Ludwig, E / Yu, H / Lowenfels, A B / Seminara, D / Petersen, G M / La Vecchia, C / Boffetta, P. ·Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. eduell@iconcologia.net ·Ann Oncol · Pubmed #22767586.

ABSTRACT: BACKGROUND: Pancreatitis is a known risk factor for pancreatic cancer; however, an unknown fraction of the disease is thought to be a consequence of tumor-related duct obstruction. PATIENTS AND METHODS: A pooled analysis of a history of pancreatitis and risk of pancreatic cancer was carried out considering the time interval between diagnoses and potential modification by covariates. Adjusted pooled odds ratios (ORs) and 95% confidence intervals (CIs) were estimated from 10 case-control studies (5048 cases of ductal pancreatic adenocarcinoma and 10,947 controls) taking part in the International Pancreatic Cancer Case-Control Consortium (PanC4). RESULTS: The association between pancreatitis and pancreatic cancer was nearly three-fold at intervals of >2 years between diagnoses (OR: 2.71, 95% CI: 1.96-3.74) and much stronger at intervals of ≤2 years (OR: 13.56, 95% CI: 8.72-21.90) probably reflecting a combination of reverse causation and antecedent misdiagnosis of pancreas cancer as pancreatitis. The younger (<65 years) pancreatic cancer cases showed stronger associations with previous (>2 years) pancreatitis (OR: 3.91, 95% CI: 2.53-6.04) than the older (≥65 years) cases (OR: 1.68, 95% CI: 1.02-2.76; P value for interaction: 0.006). CONCLUSIONS: Despite a moderately strong association between pancreatitis (diagnosed before >2 years) and pancreatic cancer, the population attributable fraction was estimated at 1.34% (95% CI: 0.612-2.07%), suggesting that a relatively small proportion of pancreatic cancer might be avoided if pancreatitis could be prevented.

4 Article A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. 2010

Petersen, Gloria M / Amundadottir, Laufey / Fuchs, Charles S / Kraft, Peter / Stolzenberg-Solomon, Rachael Z / Jacobs, Kevin B / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Gallinger, Steven / Gross, Myron / Helzlsouer, Kathy / Holly, Elizabeth A / Jacobs, Eric J / Klein, Alison P / LaCroix, Andrea / Li, Donghui / Mandelson, Margaret T / Olson, Sara H / Risch, Harvey A / Zheng, Wei / Albanes, Demetrius / Bamlet, William R / Berg, Christine D / Boutron-Ruault, Marie-Christine / Buring, Julie E / Bracci, Paige M / Canzian, Federico / Clipp, Sandra / Cotterchio, Michelle / de Andrade, Mariza / Duell, Eric J / Gaziano, J Michael / Giovannucci, Edward L / Goggins, Michael / Hallmans, Göran / Hankinson, Susan E / Hassan, Manal / Howard, Barbara / Hunter, David J / Hutchinson, Amy / Jenab, Mazda / Kaaks, Rudolf / Kooperberg, Charles / Krogh, Vittorio / Kurtz, Robert C / Lynch, Shannon M / McWilliams, Robert R / Mendelsohn, Julie B / Michaud, Dominique S / Parikh, Hemang / Patel, Alpa V / Peeters, Petra H M / Rajkovic, Aleksandar / Riboli, Elio / Rodriguez, Laudina / Seminara, Daniela / Shu, Xiao-Ou / Thomas, Gilles / Tjønneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Van Den Eeden, Stephen K / Virtamo, Jarmo / Wactawski-Wende, Jean / Wang, Zhaoming / Wolpin, Brian M / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Fraumeni, Joseph F / Hoover, Robert N / Hartge, Patricia / Chanock, Stephen J. ·Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA. ·Nat Genet · Pubmed #20101243.

ABSTRACT: We conducted a genome-wide association study of pancreatic cancer in 3,851 affected individuals (cases) and 3,934 unaffected controls drawn from 12 prospective cohort studies and 8 case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P = 3.27 x 10(-11), per-allele odds ratio (OR) 1.26, 95% CI 1.18-1.35) and rs9564966 (P = 5.86 x 10(-8), per-allele OR 1.21, 95% CI 1.13-1.30), map to a nongenic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2, and the strongest signal was at rs3790844 (P = 2.45 x 10(-10), per-allele OR 0.77, 95% CI 0.71-0.84). A single SNP, rs401681 (P = 3.66 x 10(-7), per-allele OR 1.19, 95% CI 1.11-1.27), maps to the CLPTM1L-TERT locus on 5p15.33, which is associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies.