Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Francisco X. Real
Based on 45 articles published since 2009
(Why 45 articles?)
||||

Between 2009 and 2019, F. X. Real wrote the following 45 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
Pages: 1 · 2
1 Review A genetic roadmap of pancreatic cancer: still evolving. 2017

Notta, Faiyaz / Hahn, Stephan A / Real, Francisco X. ·Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. · Department of Medical Biophysics, University of Toronto, Toronto, Canada. · Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. · CIBERONC, Madrid, Spain. ·Gut · Pubmed #28993418.

ABSTRACT: A diagnosis of pancreatic ductal adenocarcinoma (PDA) is often fatal. PDA is widely recognised as one of the 'incurable cancers' because therapies against this tumour type are generally ineffective. The fatal nature of this tumour is due to its aggressive clinical course. Pancreatic cancer commonly presents at the metastatic stage; even in cases where tumours are localised to the pancreas at diagnosis, metastatic seeds have often been invariably been spawned off, frustrating surgical attempts to cure the cancer. The key principles of pancreatic cancer mutational development were outlined nearly two decades ago using the genetics of precursor lesions to position the various stages of tumour progression. Since then, there has been a cavalcade of new data. How these recent studies impact the classical perceptions of pancreatic cancer development is a work in progress. Given that significant improvements in patient outcomes are not in sight for this disease, it is likely that broadening the current perspectives and acquiring deeper biological insights into the morphogenetic route of tumour development will be needed to foster new strategies for more effective cancer control.

2 Review Reduced risk of pancreatic cancer associated with asthma and nasal allergies. 2017

Gomez-Rubio, Paulina / Zock, Jan-Paul / Rava, Marta / Marquez, Mirari / Sharp, Linda / Hidalgo, Manuel / Carrato, Alfredo / Ilzarbe, Lucas / Michalski, Christoph / Molero, Xavier / Farré, Antoni / Perea, José / Greenhalf, William / O'Rorke, Michael / Tardón, Adonina / Gress, Thomas / Barberà, Victor / Crnogorac-Jurcevic, Tatjana / Domínguez-Muñoz, Enrique / Muñoz-Bellvís, Luís / Alvarez-Urturi, Cristina / Balcells, Joaquim / Barneo, Luis / Costello, Eithne / Guillén-Ponce, Carmen / Kleeff, Jörg / Kong, Bo / Lawlor, Rita / Löhr, Matthias / Mora, Josefina / Murray, Lim / O'Driscoll, Damian / Peláez, Pablo / Poves, Ignasi / Scarpa, Aldo / Real, Francisco X / Malats, Núria / Anonymous6460850. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. · Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain. · National Cancer Registry Ireland, Cork, Ireland, and Institute of Health & Society, Newcastle University, UK. · Hospital Madrid-Norte-Sanchinarro, Madrid, Spain. · Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain. · Hospital del Mar-Parc de Salut Mar, Barcelona, Spain. · Technical University of Munich, Munich, Germany. · Exocrine Pancreas Research Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain. · Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. · Department of Surgery, 12 de Octubre University Hospital, Madrid, Spain. · The Royal Liverpool University Hospital, Liverpool, UK. · Centre for Public Health, Queen's University Belfast, Belfast, UK. · Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital Giessen and Marburg, Marburg, Germany. · Laboratorio de Genética Molecular, Hospital General Universitario de Elche, Elche, Spain. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK. · Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. · Cirugía General y del Aparato Digestivo, Hospital Universitario de Salamanca, Salamanca, Spain. · Department of Pathology and Diagnostics, University of Verona, Verona, Italy. · Gastrocentrum, Karolinska Institutet, Stockholm, Sweden. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ·Gut · Pubmed #26628509.

ABSTRACT: OBJECTIVE: Studies indicate an inverse association between ductal adenocarcinoma of the pancreas (PDAC) and nasal allergies. However, controversial findings are reported for the association with asthma. Understanding PDAC risk factors will help us to implement appropriate strategies to prevent, treat and diagnose this cancer. This study assessed and characterised the association between PDAC and asthma and corroborated existing reports regarding the association between allergies and PDAC risk. DESIGN: Information about asthma and allergies was collated from 1297 PDAC cases and 1024 controls included in the PanGenEU case-control study. Associations between PDAC and atopic diseases were studied using multilevel logistic regression analysis. Meta-analyses of association studies on these diseases and PDAC risk were performed applying random-effects model. RESULTS: Asthma was associated with lower risk of PDAC (OR 0.64, 95% CI 0.47 to 0.88), particularly long-standing asthma (>=17 years, OR 0.39, 95% CI 0.24 to 0.65). Meta-analysis of 10 case-control studies sustained our results (metaOR 0.73, 95% CI 0.59 to 0.89). Nasal allergies and related symptoms were associated with lower risk of PDAC (OR 0.66, 95% CI 0.52 to 0.83 and OR 0.59, 95% CI 0.46 to 0.77, respectively). These results were supported by a meta-analysis of nasal allergy studies (metaOR 0.6, 95% CI 0.5 to 0.72). Skin allergies were not associated with PDAC risk. CONCLUSIONS: This study shows a consistent inverse association between PDAC and asthma and nasal allergies, supporting the notion that atopic diseases are associated with reduced cancer risk. These results point to the involvement of immune and/or inflammatory factors that may either foster or restrain pancreas carcinogenesis warranting further research to understand the molecular mechanisms driving this association.

3 Review International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. 2016

Takaori, Kyoichi / Bassi, Claudio / Biankin, Andrew / Brunner, Thomas B / Cataldo, Ivana / Campbell, Fiona / Cunningham, David / Falconi, Massimo / Frampton, Adam E / Furuse, Junji / Giovannini, Marc / Jackson, Richard / Nakamura, Akira / Nealon, William / Neoptolemos, John P / Real, Francisco X / Scarpa, Aldo / Sclafani, Francesco / Windsor, John A / Yamaguchi, Koji / Wolfgang, Christopher / Johnson, Colin D / Anonymous480853. ·Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan. Electronic address: takaori@kuhp.kyoto-u.ac.jp. · Department of Surgery and Oncology, Pancreas Institute, University of Verona, Verona, Italy. · Academic Unit of Surgery, University of Glasgow, Glasgow, United Kingdom. · Department of Radiation Oncology, University Hospitals Freiburg, Germany. · Department of Pathology and Diagnostics, University of Verona, Verona, Italy. · Department of Pathology, Royal Liverpool University Hospital, Liverpool, United Kingdom. · Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom. · Pancreatic Surgery Unit, Università Vita e Salute, Milano, Italy. · HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, United Kingdom. · Department of Medical Oncology, Kyorin University School of Medicine, Tokyo, Japan. · Endoscopic Unit, Paoli-Calmettes Institute, Marseille, France. · NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom. · Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto, Japan. · Division of General Surgery, Yale University, New Haven, CT, United States of America. · Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain. · Department of Surgery, University of Auckland, HBP/Upper GI Unit, Auckland City Hospital, Auckland, New Zealand. · Department of Advanced Treatment of Pancreatic Disease, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan. · Department of Surgery, The Johns Hopkins University, Baltimore, MD, United States of America. · University Surgical Unit, Southampton General Hospital, Southampton, United Kingdom. ·Pancreatology · Pubmed #26699808.

ABSTRACT: BACKGROUND: Pancreatic cancer is one of the most devastating diseases with an extremely high mortality. Medical organizations and scientific societies have published a number of guidelines to address active treatment of pancreatic cancer. The aim of this consensus review was to identify where there is agreement or disagreement among the existing guidelines and to help define the gaps for future studies. METHODS: A panel of expert pancreatologists gathered at the 46th European Pancreatic Club Meeting combined with the 18th International Association of Pancreatology Meeting and collaborated on critical reviews of eight English language guidelines for the clinical management of pancreatic cancer. Clinical questions (CQs) of interest were proposed by specialists in each of nine areas. The recommendations for the CQs in existing guidelines, as well as the evidence on which these were based, were reviewed and compared. The evidence was graded as sufficient, mediocre or poor/absent. RESULTS: Only 4 of the 36 CQs, had sufficient evidence for agreement. There was also agreement in five additional CQs despite the lack of sufficient evidence. In 22 CQs, there was disagreement regardless of the presence or absence of evidence. There were five CQs that were not addressed adequately by existing guidelines. CONCLUSION: The existing guidelines provide both evidence- and consensus-based recommendations. There is also considerable disagreement about the recommendations in part due to the lack of high level evidence. Improving the clinical management of patients with pancreatic cancer, will require continuing efforts to undertake research that will provide sufficient evidence to allow agreement.

4 Review Addressing the challenges of pancreatic cancer: future directions for improving outcomes. 2015

Hidalgo, Manuel / Cascinu, Stefano / Kleeff, Jörg / Labianca, Roberto / Löhr, J-Matthias / Neoptolemos, John / Real, Francisco X / Van Laethem, Jean-Luc / Heinemann, Volker. ·Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain. Electronic address: mhidalgo@cnio.es. · Department of Medical Oncology, University of Ancona, Ancona, Italy. · Department of General Surgery, Technische Universität München, Munich, Germany. · Ospedale Papa Giovanni XXIII, Bergamo, Italy. · Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden. · National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Cancer Research UK Liverpool Clinical Trials Unit Director, University of Liverpool and Royal Liverpool University Hospital, Liverpool, UK. · Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid and Universitat Pompeu Fabra, Barcelona, Spain. · Department of Gastroenterology-GI Cancer Unit, Erasme University Hospital, Brussels, Belgium. · Comprehensive Cancer Centre Munich, Klinikum der Universität München, Munich, Germany. ·Pancreatology · Pubmed #25547205.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic tumours, is a devastating malignancy with an extremely poor prognosis, as shown by a 1-year survival rate of around 18% for all stages of the disease. The low survival rates associated with PDAC primarily reflect the fact that tumours progress rapidly with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. As a result, there is an urgent need to develop accurate markers of pre-invasive pancreatic neoplasms in order to facilitate prediction of cancer risk and to help diagnose the disease at an earlier stage. However, screening for early diagnosis of prostate cancer remains challenging and identifying a highly accurate, low-cost screening test for early PDAC for use in clinical practice remains an important unmet need. More effective therapies are also crucial in PDAC, since progress in identifying novel therapies has been hampered by the genetic complexity of the disease and treatment remains a major challenge. Presently, the greatest step towards improved treatment efficacy has been made in the field of palliative chemotherapy by introducing FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan and oxaliplatin) and gemcitabine/nab-paclitaxel. Strategies designed to raise the profile of PDAC in research and clinical practice are a further requirement in order to ensure the best treatment for patients. This article proposes a number of approaches that may help to accelerate progress in treating patients with PDAC, which, in turn, may be expected to improve the quality of life and survival for those suffering from this devastating disease.

5 Review Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? 2012

Rooman, Ilse / Real, Francisco X. ·Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst-Sydney, NSW, Australia. i.rooman@garvan.org.au ·Gut · Pubmed #21730103.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) has long been considered to arise from pancreatic ducts on the basis of its morphology, the occurrence of dysplasia in putative preneoplastic ductal lesions, and the absence of acinar dysplasia in the pancreas of patients with PDAC. However, evidence gathered through both in vitro studies and--more importantly--genetic mouse models of PDAC shows that ductal-type tumours can arise from acinar cells. These findings raise new important questions related to PDAC pathophysiology and call for in-depth studies of acinar cell differentiation in order to better understand PDAC biology. The authors review these issues and discuss how the novel findings should impact on future work aiming at early diagnosis and improved outcome of patients with PDAC.

6 Review Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: etiopathogenic similarities, differences and paradoxes. 2009

Porta, Miquel / Crous-Bou, Marta / Wark, Petra A / Vineis, Paolo / Real, Francisco X / Malats, Núria / Kampman, Ellen. ·Institut Municipal d'Investigació Mèdica, Barcelona, Spain. mporta@imim.es ·Mutat Res · Pubmed #19651236.

ABSTRACT: Surprisingly different frequencies and patterns of K-ras mutations are observed in human adenocarcinomas of the pancreas, colorectum and lung. Their respective relationships with smoking are apparently paradoxical. We evaluated all the available types of clinical and epidemiological studies on the relationship between tobacco smoking and the occurrence of K-ras mutations in human adenocarcinomas of the pancreas, colorectum and lung. We identified 8, 7 and 12 studies that analyzed the relationship between K-ras mutations and tobacco smoking in human neoplasms of the pancreas, colorectum and lung, respectively. A meta-analysis was undertaken for each site separately. In pancreatic adenocarcinomas lifetime history of tobacco consumption was not significantly associated with the frequency of K-ras mutations (OR=1.26; 95% CI=0.82-1.94). Similarly, no association was observed between smoking and K-ras mutations in colorectal adenocarcinomas (OR=0.94; CI=0.79-1.12), neither when colorectal adenomas and adenocarcinomas were jointly analyzed (OR=0.96; 95% CI=0.83-1.13). In lung adenocarcinoma, where only 15-25% of cases harbor a K-ras mutation, tumors from smokers were more likely to have K-ras mutations than tumors from non-smokers (OR=3.67; 95% CI=2.47-5.45). Furthermore, in lung adenocarcinomas K-ras mutations have a pattern different from that in pancreatic and colorectal adenocarcinomas. Results support the hypothesis that smoking influences the risk of pancreatic cancer - and possibly colorectal cancer - through events other than K-ras mutations. In adenocarcinoma of the lung, smoking may play a role in the occurrence of K-ras mutations. If the influence of tobacco products in the induction, acquisition and persistence of K-ras mutations had some tissue specificity, or was dependent on different factors in different organs, the corresponding mechanisms would deserve detailed research.

7 Review The inherited genetic component of sporadic pancreatic adenocarcinoma. 2009

Milne, R L / Greenhalf, W / Murta-Nascimento, C / Real, F X / Malats, N. ·Spanish National Cancer Research Centre, Madrid, Spain. ·Pancreatology · Pubmed #19352090.

ABSTRACT: Pancreatic cancer, like many other complex diseases, has genetic and environmental components to its etiology. It is likely that relatively common genetic variants with modest effects on pancreatic cancer risk play an important role in both familial and sporadic forms of the disease, either individually or in interaction with environmental factors. The relatively high frequency of such variants means that they could potentially explain a substantial portion of disease risk. Here we summarize the findings published to date from genetic association studies. In general, very few low-penetrance variants have been identified and those that have require replication in independent studies. Possible gene-environment interactions arising from these studies also require replication. More comprehensive approaches are needed to make progress, including global analyses of biologically sound pathways and genome-wide association studies. Large sample sizes are required to do this appropriately and multi-study consortia make this possible. A number of consortia of pre-existing studies have already been formed, and these will facilitate the identification of further low-penetrance variants and gene-environment interaction. However, these approaches do not substitute for the design of novel, sufficiently powered studies that apply uniform criteria to case selection, the acquisition of environmental exposure information, and to biological sample collection.

8 Article Pancreatic cancer and autoimmune diseases: An association sustained by computational and epidemiological case-control approaches. 2019

Gomez-Rubio, Paulina / Piñero, Janet / Molina-Montes, Esther / Gutiérrez-Sacristán, Alba / Marquez, Mirari / Rava, Marta / Michalski, Christoph W / Farré, Antoni / Molero, Xavier / Löhr, Matthias / Perea, José / Greenhalf, William / O'Rorke, Michael / Tardón, Adonina / Gress, Thomas / Barberá, Victor M / Crnogorac-Jurcevic, Tatjana / Muñoz-Bellvís, Luís / Domínguez-Muñoz, Enrique / Balsells, Joaquim / Costello, Eithne / Yu, Jingru / Iglesias, Mar / Ilzarbe, Lucas / Kleeff, Jörg / Kong, Bo / Mora, Josefina / Murray, Liam / O'Driscoll, Damian / Poves, Ignasi / Lawlor, Rita T / Ye, Weimin / Hidalgo, Manuel / Scarpa, Aldo / Sharp, Linda / Carrato, Alfredo / Real, Francisco X / Furlong, Laura I / Malats, Núria / Anonymous2321201. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center CNIO, Madrid, Spain. · Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Enfermedades Hepáticas y Digestivas (CIBERHD), and Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain. · Research Program on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universidad Pompeu Fabra (UPF), Barcelona, Spain. · Department of Surgery, Technical University of Munich, Munich, Germany. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. · Hospital Universitaru Vall d'Hebron, Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Barcelona, Spain. · Universitat Auntònoma de Barcelona, Campus de la UAB, Barcelona, Spain. · Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and University Hospital, Stockholm, Sweden. · Department of Surgery, University Hospital 12 de Octubre, Madrid, Spain. · Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool, United Kingdom. · Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom. · Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany. · Laboratorio de Genética Molecular, Hospital General Universitario de Elche, Elche, Spain. · Centre for Molecular Oncology, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. · General and Digestive Surgery Department, Hospital Universitario de Salamanca, Salamanca, Spain. · Department of Gastroenterology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. · Department of Gastroenterology, Hospital del Mar/Parc de Salut Mar, Barcelona, Spain. · Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany. · Cancer Data Registrars, National Cancer Registry Ireland, Cork, Ireland. · ARC-Net Centre for Applied Research on Cancer, Department of Pathology and Diagnostics, University Hospital Trust of Verona, Verona, Italy. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet and University Hospital, Sweden. · Hospital Madrid-Norte-Sanchinarro and Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA. · Institute of Health and Society, Newcastle University, Newcastle upon Tyne, United Kingdom. · Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. · PanGenEU Study Investigators (Additional file 1: Annex S1). ·Int J Cancer · Pubmed #30229903.

ABSTRACT: Deciphering the underlying genetic basis behind pancreatic cancer (PC) and its associated multimorbidities will enhance our knowledge toward PC control. The study investigated the common genetic background of PC and different morbidities through a computational approach and further evaluated the less explored association between PC and autoimmune diseases (AIDs) through an epidemiological analysis. Gene-disease associations (GDAs) of 26 morbidities of interest and PC were obtained using the DisGeNET public discovery platform. The association between AIDs and PC pointed by the computational analysis was confirmed through multivariable logistic regression models in the PanGen European case-control study population of 1,705 PC cases and 1,084 controls. Fifteen morbidities shared at least one gene with PC in the DisGeNET database. Based on common genes, several AIDs were genetically associated with PC pointing to a potential link between them. An epidemiologic analysis confirmed that having any of the nine AIDs studied was significantly associated with a reduced risk of PC (Odds Ratio (OR) = 0.74, 95% confidence interval (CI) 0.58-0.93) which decreased in subjects having ≥2 AIDs (OR = 0.39, 95%CI 0.21-0.73). In independent analyses, polymyalgia rheumatica, and rheumatoid arthritis were significantly associated with low PC risk (OR = 0.40, 95%CI 0.19-0.89, and OR = 0.73, 95%CI 0.53-1.00, respectively). Several inflammatory-related morbidities shared a common genetic component with PC based on public databases. These molecular links could shed light into the molecular mechanisms underlying PC development and simultaneously generate novel hypotheses. In our study, we report sound findings pointing to an association between AIDs and a reduced risk of PC.

9 Article Resection of pancreatic cancer in Europe and USA: an international large-scale study highlighting large variations. 2019

Huang, Lei / Jansen, Lina / Balavarca, Yesilda / Molina-Montes, Esther / Babaei, Masoud / van der Geest, Lydia / Lemmens, Valery / Van Eycken, Liesbet / De Schutter, Harlinde / Johannesen, Tom B / Fristrup, Claus W / Mortensen, Michael B / Primic-Žakelj, Maja / Zadnik, Vesna / Becker, Nikolaus / Hackert, Thilo / Mägi, Margit / Cassetti, Tiziana / Sassatelli, Romano / Grützmann, Robert / Merkel, Susanne / Gonçalves, Ana F / Bento, Maria J / Hegyi, Péter / Lakatos, Gábor / Szentesi, Andrea / Moreau, Michel / van de Velde, Tony / Broeks, Annegien / Sant, Milena / Minicozzi, Pamela / Mazzaferro, Vincenzo / Real, Francisco X / Carrato, Alfredo / Molero, Xavier / Besselink, Marc G / Malats, Núria / Büchler, Markus W / Schrotz-King, Petra / Brenner, Hermann. ·Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · Geneticand Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, ISCIII, Madrid, Spain. · Netherlands Cancer Registry (NCR), Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, Netherlands. · Belgian Cancer Registry (BCR), Brussels, Belgium. · Registry Department, The Cancer Registry of Norway (CRN), Oslo, Norway. · Danish Pancreatic Cancer Database (DPCD), Odense, Denmark. · Danish Pancreatic Cancer Group, HPB Section, Department of Surgery, Odense University Hospital, Odense, Denmark. · Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia. · Clinical Cancer Registry, DKFZ and NCT, Heidelberg, Germany. · Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany. · Estonian Cancer Registry, National Institute for Health Development, Tallinn, Estonia. · Pancreatic Cancer Registry of Reggio Emilia Province, Unit of Gastroenterology and Digestive Endoscopy AUSL-RE, Local Health Authority-IRCCS, Reggio Emilia, Italy. · Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany. · Departments of Epidemiology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal. · Institute for Translational Medicine, University of Pécs, Pécs, Hungary. · Department of Oncology, St. Istvan and St. Laszlo Hospital and Out-Patient Department, Budapest, Hungary. · Department of Surgical Oncology, Jules Bordet Institute (IJB), Brussels, Belgium. · Biometrics Department, The Netherlands Cancer Institute (NKI), Amsterdam, Netherlands. · Analytical Epidemiology and Health Impact Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy. · Hepato-Biliary Surgery Unit, Istituto Nazionale dei Tumori (INT), and University of Milan, Milan, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, Madrid, Spain. · Department de Ciencies Experimentals i de la, Universitat Pompeu Fabra, Barcelona, Spain. · Department of Oncology, Ramon y Cajal University Hospital, IRYCIS, Alcala University, CIBERONC, Madrid, Spain. · Hospital Universitari Vall d'Hebron, Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Campus de la UAB, Barcelona, Spain. · CIBEREHD and CIBERESP, Madrid, Spain. · Dutch Pancreatic Cancer Group, Academic Medical Centre Amsterdam, Amsterdam, Netherlands. ·Gut · Pubmed #29158237.

ABSTRACT: OBJECTIVE: Resection can potentially cure resectable pancreatic cancer (PaC) and significantly prolong survival in some patients. This large-scale international study aimed to investigate variations in resection for PaC in Europe and USA and determinants for its utilisation. DESIGN: Data from six European population-based cancer registries and the US Surveillance, Epidemiology, and End Results Program database during 2003-2016 were analysed. Age-standardised resection rates for overall and stage I-II PaCs were computed. Associations between resection and demographic and clinical parameters were assessed using multivariable logistic regression models. RESULTS: A total of 153 698 records were analysed. In population-based registries in 2012-2014, resection rates ranged from 13.2% (Estonia) to 21.2% (Slovenia) overall and from 34.8% (Norway) to 68.7% (Denmark) for stage I-II tumours, with great international variations. During 2003-2014, resection rates only increased in USA, the Netherlands and Denmark. Resection was significantly less frequently performed with more advanced tumour stage (ORs for stage III and IV versus stage I-II tumours: 0.05-0.18 and 0.01-0.06 across countries) and increasing age (ORs for patients 70-79 and ≥80 versus those <60 years: 0.37-0.63 and 0.03-0.16 across countries). Patients with advanced-stage tumours (stage III-IV: 63.8%-81.2%) and at older ages (≥70 years: 52.6%-59.5%) receiving less frequently resection comprised the majority of diagnosed cases. Patient performance status, tumour location and size were also associated with resection application. CONCLUSION: Rates of PaC resection remain low in Europe and USA with great international variations. Further studies are warranted to explore reasons for these variations.

10 Article Mutant Kras Dosage and Chromothripsis: The Right Ingredients for a Pancreatic Cancer Catastrophe. 2018

Real, Francisco X / de Andrés, Mónica P. ·Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. Electronic address: preal@cnio.es. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain. ·Trends Cancer · Pubmed #29860982.

ABSTRACT: Pancreatic ductal adenocarcinoma is a deadly disease requiring early identification but this is a challenging task in humans. Therefore, disease modeling in mice could provide important insights into early genetic events. In an article in Nature, Mueller et al. show that changes in mutant Kras allele dosage and chromothripsis are important events, both for tumor progression and to establish genetic contingencies that highlight how the tumor progresses and acquires major biological features.

11 Article Genetic unrelatedness of co-occurring pancreatic adenocarcinomas and IPMNs challenges current views of clinical management. 2018

Scarpa, Aldo / Real, Francisco X / Luchini, Claudio. ·Department of Diagnostics and Public Health-Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·Gut · Pubmed #29661802.

ABSTRACT: -- No abstract --

12 Article Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. 2018

Klein, Alison P / Wolpin, Brian M / Risch, Harvey A / Stolzenberg-Solomon, Rachael Z / Mocci, Evelina / Zhang, Mingfeng / Canzian, Federico / Childs, Erica J / Hoskins, Jason W / Jermusyk, Ashley / Zhong, Jun / Chen, Fei / Albanes, Demetrius / Andreotti, Gabriella / Arslan, Alan A / Babic, Ana / Bamlet, William R / Beane-Freeman, Laura / Berndt, Sonja I / Blackford, Amanda / Borges, Michael / Borgida, Ayelet / Bracci, Paige M / Brais, Lauren / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, Bas / Buring, Julie / Campa, Daniele / Capurso, Gabriele / Cavestro, Giulia Martina / Chaffee, Kari G / Chung, Charles C / Cleary, Sean / Cotterchio, Michelle / Dijk, Frederike / Duell, Eric J / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gallinger, Steven / M Gaziano, J Michael / Gazouli, Maria / Giles, Graham G / Giovannucci, Edward / Goggins, Michael / Goodman, Gary E / Goodman, Phyllis J / Hackert, Thilo / Haiman, Christopher / Hartge, Patricia / Hasan, Manal / Hegyi, Peter / Helzlsouer, Kathy J / Herman, Joseph / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert / Hung, Rayjean J / Jacobs, Eric J / Jamroziak, Krzysztof / Janout, Vladimir / Kaaks, Rudolf / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Kooperberg, Charles / Kulke, Matthew H / Kupcinskas, Juozas / Kurtz, Robert J / Laheru, Daniel / Landi, Stefano / Lawlor, Rita T / Lee, I-Min / LeMarchand, Loic / Lu, Lingeng / Malats, Núria / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Mohelníková-Duchoňová, Beatrice / Neale, Rachel E / Neoptolemos, John P / Oberg, Ann L / Olson, Sara H / Orlow, Irene / Pasquali, Claudio / Patel, Alpa V / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Real, Francisco X / Rothman, Nathaniel / Scelo, Ghislaine / Sesso, Howard D / Severi, Gianluca / Shu, Xiao-Ou / Silverman, Debra / Smith, Jill P / Soucek, Pavel / Sund, Malin / Talar-Wojnarowska, Renata / Tavano, Francesca / Thornquist, Mark D / Tobias, Geoffrey S / Van Den Eeden, Stephen K / Vashist, Yogesh / Visvanathan, Kala / Vodicka, Pavel / Wactawski-Wende, Jean / Wang, Zhaoming / Wentzensen, Nicolas / White, Emily / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Zheng, Wei / Kraft, Peter / Li, Donghui / Chanock, Stephen / Obazee, Ofure / Petersen, Gloria M / Amundadottir, Laufey T. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. aklein1@jhmi.edu. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA. · Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA. · International Agency for Research on Cancer (IARC), 69372, Lyon, France. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. · Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA. · Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. · Department of Biology, University of Pisa, 56126, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA. · Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada. · Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic. · Yale Cancer Center, New Haven, CT, 06510, USA. · Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy. · Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA. · Boston VA Healthcare System, Boston, MA, 02132, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany. · Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA. · Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA. · First Department of Medicine, University of Szeged, 6725, Szeged, Hungary. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic. · Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA. · Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland. · Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic. · Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. · ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain. · CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain. · Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain. · Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy. · Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain. · CIBERONC, 28029, Madrid, Spain. · Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy. · Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland. · Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic. · Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia. · Department of General Surgery, University of Heidelburg, Heidelberg, Germany. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain. · Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. · Department of Medicine, Georgetown University, Washington, 20057, USA. · Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic. · Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, 90-647, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy. · Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic. · Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA. · Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. amundadottirl@mail.nih.gov. ·Nat Commun · Pubmed #29422604.

ABSTRACT: In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10

13 Article Risk of pancreatic cancer associated with family history of cancer and other medical conditions by accounting for smoking among relatives. 2018

Molina-Montes, E / Gomez-Rubio, P / Márquez, M / Rava, M / Löhr, M / Michalski, C W / Molero, X / Farré, A / Perea, J / Greenhalf, W / Ilzarbe, L / O'Rorke, M / Tardón, A / Gress, T / Barberà, V M / Crnogorac-Jurcevic, T / Domínguez-Muñoz, E / Muñoz-Bellvís, L / Balsells, J / Costello, E / Huang, J / Iglesias, M / Kleeff, J / Kong, Bo / Mora, J / Murray, L / O'Driscoll, D / Poves, I / Scarpa, A / Ye, W / Hidalgo, M / Sharp, L / Carrato, A / Real, F X / Malats, N / Anonymous601079. ·Spanish National Cancer Research Center (CNIO), Genetic and Molecular Epidemiology Group, Madrid, and CIBERONC, Spain. · Karolinska Institutet and University Hospital, Gastrocentrum, Stockholm, Sweden. · Technical University of Munich, Department of Surgery, Munich, Germany. · University of Heidelberg, Department of Surgery, Heidelberg, Germany. · Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, and CIBEREHD, Spain. · Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology, Barcelona, Spain. · University Hospital 12 de Octubre, Department of Surgery, Madrid, Spain. · Royal Liverpool University Hospital, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK. · Hospital del Mar-Parc de Salut Mar, Barcelona, Spain. · Queen's University Belfast, Centre for Public Health, Belfast, UK. · Instituto Universitario de Oncología del Principado de Asturias, Department of Medicine, Oviedo, and CIBERESP, Spain. · University Hospital of Giessen and Marburg, Department of Gastroenterology, Marburg, Germany. · General University Hospital of Elche, Molecular Genetics Laboratory, Elche, Spain. · Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, London, UK. · University Clinical Hospital of Santiago de Compostela, Department of Gastroenterology, Santiago de Compostela, Spain. · Salamanca University Hospital, General and Digestive Surgery Department, Salamanca, Spain. · Martin-Luther-University Halle-Wittenberg, Department of Visceral, Vascular and Endocrine Surgery, Halle (Saale), Germany. · National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland. · ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. · Madrid-Norte-Sanchinarro Hospital, Madrid, Spain. · Newcastle University, Institute of Health and Society, Newcastle upon Tyne, UK. · Ramón y Cajal University Hospital, Department of Oncology, IRYCIS, Alcala University, Madrid, and CIBERONC, Spain. · Spanish National Cancer Research Centre (CNIO), Epithelial Carcinogenesis Group, Madrid, Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, and CIBERONC, Spain. ·Int J Epidemiol · Pubmed #29329392.

ABSTRACT: Background: Family history (FH) of pancreatic cancer (PC) has been associated with an increased risk of PC, but little is known regarding the role of inherited/environmental factors or that of FH of other comorbidities in PC risk. We aimed to address these issues using multiple methodological approaches. Methods: Case-control study including 1431 PC cases and 1090 controls and a reconstructed-cohort study (N = 16 747) made up of their first-degree relatives (FDR). Logistic regression was used to evaluate PC risk associated with FH of cancer, diabetes, allergies, asthma, cystic fibrosis and chronic pancreatitis by relative type and number of affected relatives, by smoking status and other potential effect modifiers, and by tumour stage and location. Familial aggregation of cancer was assessed within the cohort using Cox proportional hazard regression. Results: FH of PC was associated with an increased PC risk [odds ratio (OR) = 2.68; 95% confidence interval (CI): 2.27-4.06] when compared with cancer-free FH, the risk being greater when ≥ 2 FDRs suffered PC (OR = 3.88; 95% CI: 2.96-9.73) and among current smokers (OR = 3.16; 95% CI: 2.56-5.78, interaction FHPC*smoking P-value = 0.04). PC cumulative risk by age 75 was 2.2% among FDRs of cases and 0.7% in those of controls [hazard ratio (HR) = 2.42; 95% CI: 2.16-2.71]. PC risk was significantly associated with FH of cancer (OR = 1.30; 95% CI: 1.13-1.54) and diabetes (OR = 1.24; 95% CI: 1.01-1.52), but not with FH of other diseases. Conclusions: The concordant findings using both approaches strengthen the notion that FH of cancer, PC or diabetes confers a higher PC risk. Smoking notably increases PC risk associated with FH of PC. Further evaluation of these associations should be undertaken to guide PC prevention strategies.

14 Article c-Myc downregulation is required for preacinar to acinar maturation and pancreatic homeostasis. 2018

Sánchez-Arévalo Lobo, Victor J / Fernández, Luis César / Carrillo-de-Santa-Pau, Enrique / Richart, Laia / Cobo, Isidoro / Cendrowski, Jaroslaw / Moreno, Ulisses / Del Pozo, Natalia / Megías, Diego / Bréant, Bernardette / Wright, Christopher V / Magnuson, Mark / Real, Francisco X. ·Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain. · Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain. · Centre de Recherche des Cordeliers, INSERM, Paris, France. · Department of Cell & Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·Gut · Pubmed #28159836.

ABSTRACT: BACKGROUND AND AIMS: c-Myc is highly expressed in pancreatic multipotent progenitor cells (MPC) and in pancreatic cancer. The transition from MPC to unipotent acinar progenitors is associated with c-Myc downregulation; a role for c-Myc in this process, and its possible relationship to a role in cancer, has not been established. DESIGN: Using coimmunoprecipitation assays, we demonstrate that c-Myc and Ptf1a interact. Using reverse transcriptase qPCR, western blot and immunofluorescence, we show the erosion of the acinar programme. To analyse the genomic distribution of c-Myc and Ptf1a and the global transcriptomic profile, we used ChIP-seq and RNA-seq, respectively; validation was performed with ChIP-qPCR and RT-qPCR. Lineage-tracing experiments were used to follow the effect of c-Myc overexpression in preacinar cells on acinar differentiation. RESULTS: c-Myc binds and represses the transcriptional activity of Ptf1a CONCLUSIONS: c-Myc repression during development is crucial for the maturation of preacinar cells, and c-Myc overexpression can contribute to pancreatic carcinogenesis through the induction of a dedifferentiated state.

15 Article A systems approach identifies time-dependent associations of multimorbidities with pancreatic cancer risk. 2017

Gomez-Rubio, P / Rosato, V / Márquez, M / Bosetti, C / Molina-Montes, E / Rava, M / Piñero, J / Michalski, C W / Farré, A / Molero, X / Löhr, M / Ilzarbe, L / Perea, J / Greenhalf, W / O'Rorke, M / Tardón, A / Gress, T / Barberá, V M / Crnogorac-Jurcevic, T / Muñoz-Bellvís, L / Domínguez-Muñoz, E / Gutiérrez-Sacristán, A / Balsells, J / Costello, E / Guillén-Ponce, C / Huang, J / Iglesias, M / Kleeff, J / Kong, B / Mora, J / Murray, L / O'Driscoll, D / Peláez, P / Poves, I / Lawlor, R T / Carrato, A / Hidalgo, M / Scarpa, A / Sharp, L / Furlong, L I / Real, F X / La Vecchia, C / Malats, N / Anonymous4870902. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain. · Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro," Department of Clinical Sciences and Community Health, University of Milan, Milan. · Unit of Medical Statistics, Biometry and Bioinformatics, National Cancer Institute, IRCCS Foundation, Milan. · Department of Epidemiology, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy. · Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Pompeu Fabra Univeristy (UPF), Barcelona, Spain. · Department of Surgery, Technical University of Munich, Munich. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Gastroenterology, Santa Creu i Sant Pau Hospital, Barcelona. · Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona. · Department of Medicine, Universitat Autònoma de Barcelona, Barcelona. · Network of Biomedical Research Centres (CIBER), Hepatic and Digestive Diseases and Epidemiology and Public Health, Madrid, Spain. · Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden. · Department of Gastroenterology, Parc de Salut Mar University Hospital, Barcelona. · Department of Surgery, 12 de Octubre University Hospital, Madrid, Spain. · Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool. · Centre for Public Health, Queen's University Belfast, Belfast, UK. · Department of Medicine, University Institute of Oncology of Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany. · Molecular Genetics Laboratory, General University Hospital of Elche, Elche, Spain. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK. · General and Digestive Surgery Department, Salamanca University Hospital, Salamanca. · Department of Gastroenterology, Clinical University Hospital of Santiago de Compostela, Santiago de Compostela. · Department of Oncology, Ramón y Cajal Hospital, Madrid, and CIBERONC, Spain. · Research Programme, National Cancer Registry Ireland. · ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital trust of Verona, Verona, Italy. · Clara Campal Integrated Oncological Centre, Sanchinarro Hospital, Madrid, Spain. · Institute of Health & Society, Newcastle University, UK. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, and CIBERONC. · Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain. ·Ann Oncol · Pubmed #28383714.

ABSTRACT: Background: Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed in late adulthood; therefore, many patients suffer or have suffered from other diseases. Identifying disease patterns associated with PDAC risk may enable a better characterization of high-risk patients. Methods: Multimorbidity patterns (MPs) were assessed from 17 self-reported conditions using hierarchical clustering, principal component, and factor analyses in 1705 PDAC cases and 1084 controls from a European population. Their association with PDAC was evaluated using adjusted logistic regression models. Time since diagnosis of morbidities to PDAC diagnosis/recruitment was stratified into recent (<3 years) and long term (≥3 years). The MPs and PDAC genetic networks were explored with DisGeNET bioinformatics-tool which focuses on gene-diseases associations available in curated databases. Results: Three MPs were observed: gastric (heartburn, acid regurgitation, Helicobacter pylori infection, and ulcer), metabolic syndrome (obesity, type-2 diabetes, hypercholesterolemia, and hypertension), and atopic (nasal allergies, skin allergies, and asthma). Strong associations with PDAC were observed for ≥2 recently diagnosed gastric conditions [odds ratio (OR), 6.13; 95% confidence interval CI 3.01-12.5)] and for ≥3 recently diagnosed metabolic syndrome conditions (OR, 1.61; 95% CI 1.11-2.35). Atopic conditions were negatively associated with PDAC (high adherence score OR for tertile III, 0.45; 95% CI, 0.36-0.55). Combining type-2 diabetes with gastric MP resulted in higher PDAC risk for recent (OR, 7.89; 95% CI 3.9-16.1) and long-term diagnosed conditions (OR, 1.86; 95% CI 1.29-2.67). A common genetic basis between MPs and PDAC was observed in the bioinformatics analysis. Conclusions: Specific multimorbidities aggregate and associate with PDAC in a time-dependent manner. A better characterization of a high-risk population for PDAC may help in the early diagnosis of this cancer. The common genetic basis between MP and PDAC points to a mechanistic link between these conditions.

16 Article GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. 2017

Martinelli, Paola / Carrillo-de Santa Pau, Enrique / Cox, Trevor / Sainz, Bruno / Dusetti, Nelson / Greenhalf, William / Rinaldi, Lorenzo / Costello, Eithne / Ghaneh, Paula / Malats, Núria / Büchler, Markus / Pajic, Marina / Biankin, Andrew V / Iovanna, Juan / Neoptolemos, John / Real, Francisco X. ·Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain. · Cancer Progression and Metastasis Group, Institute for Cancer Research, Medical University Wien, Vienna, Austria. · Cancer Research UK Liverpool Clinical Trials Unit, University of Liverpool, Liverpool, UK. · NIHR Liverpool Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK. · Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain. · Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France. · Institute for Research in Biomedicine (IRB), Barcelona, Spain. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain. · Department for General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Cancer Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK. · South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, Australia. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·Gut · Pubmed #27325420.

ABSTRACT: BACKGROUND AND AIMS: The role of GATA factors in cancer has gained increasing attention recently, but the function of GATA6 in pancreatic ductal adenocarcinoma (PDAC) is controversial. GATA6 is amplified in a subset of tumours and was proposed to be oncogenic, but high GATA6 levels are found in well-differentiated tumours and are associated with better patient outcome. By contrast, a tumour-suppressive function of GATA6 was demonstrated using genetic mouse models. We aimed at clarifying GATA6 function in PDAC. DESIGN: We combined GATA6 silencing and overexpression in PDAC cell lines with GATA6 ChIP-Seq and RNA-Seq data, in order to understand the mechanism of GATA6 functions. We then confirmed some of our observations in primary patient samples, some of which were included in the ESPAC-3 randomised clinical trial for adjuvant therapy. RESULTS: GATA6 inhibits the epithelial-mesenchymal transition (EMT) in vitro and cell dissemination in vivo. GATA6 has a unique proepithelial and antimesenchymal function, and its transcriptional regulation is direct and implies, indirectly, the regulation of other transcription factors involved in EMT. GATA6 is lost in tumours, in association with altered differentiation and the acquisition of a basal-like molecular phenotype, consistent with an epithelial-to-epithelial (ET CONCLUSIONS: We provide mechanistic insight into GATA6 tumour-suppressive function, its role as a regulator of canonical epithelial differentiation, and propose that loss of GATA6 expression is both prognostic and predictive of response to adjuvant therapy.

17 Article A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. 2016

Notta, Faiyaz / Chan-Seng-Yue, Michelle / Lemire, Mathieu / Li, Yilong / Wilson, Gavin W / Connor, Ashton A / Denroche, Robert E / Liang, Sheng-Ben / Brown, Andrew M K / Kim, Jaeseung C / Wang, Tao / Simpson, Jared T / Beck, Timothy / Borgida, Ayelet / Buchner, Nicholas / Chadwick, Dianne / Hafezi-Bakhtiari, Sara / Dick, John E / Heisler, Lawrence / Hollingsworth, Michael A / Ibrahimov, Emin / Jang, Gun Ho / Johns, Jeremy / Jorgensen, Lars G T / Law, Calvin / Ludkovski, Olga / Lungu, Ilinca / Ng, Karen / Pasternack, Danielle / Petersen, Gloria M / Shlush, Liran I / Timms, Lee / Tsao, Ming-Sound / Wilson, Julie M / Yung, Christina K / Zogopoulos, George / Bartlett, John M S / Alexandrov, Ludmil B / Real, Francisco X / Cleary, Sean P / Roehrl, Michael H / McPherson, John D / Stein, Lincoln D / Hudson, Thomas J / Campbell, Peter J / Gallinger, Steven. ·Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. · Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. · UHN Program in BioSpecimen Sciences, Department of Pathology, University Health Network, Toronto, Ontario M5G 2C4, Canada. · Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada. · Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. · Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada. · Eppley Institute for Research in Cancer, Nebraska Medical Center, Omaha, Nebraska 68198, USA. · Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. · Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada. · Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, Ontario M4N 3M5, Canada. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA. · Research Institute of the McGill University Health Centre, Montreal, Québec, Canada, H3H 2L9. · Theoretical Biology and Biophysics (T-6) and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 87545. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain. · Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. · Department of Surgery, University Health Network, Toronto, Ontario M5G 2C4, Canada. · Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK. ·Nature · Pubmed #27732578.

ABSTRACT: Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.

18 Article The cis-regulatory switchboard of pancreatic ductal cancer. 2016

Ferrer, Jorge / Real, Francisco X. ·Section of Epigenomics and Disease, Department of Medicine, Imperial College London, London, UK Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain. · Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·EMBO J · Pubmed #26893390.

ABSTRACT: -- No abstract --

19 Article Choline Kinase Alpha (CHKα) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors. 2016

Mazarico, José M / Sánchez-Arévalo Lobo, Victor J / Favicchio, Rosy / Greenhalf, William / Costello, Eithne / Carrillo-de Santa Pau, Enrique / Marqués, Miriam / Lacal, Juan C / Aboagye, Eric / Real, Francisco X. ·Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain. · Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain. preal@cnio.es vjsanchez@cnio.es. · Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom. · The NIHR Liverpool Pancreas Biomedical Research Unit, Liverpool, United Kingdom. · Division of Translational Oncology, Department of Oncology, Fundación Jiménez Díaz, Madrid, Spain. · Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid, Spain. Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. preal@cnio.es vjsanchez@cnio.es. ·Mol Cancer Ther · Pubmed #26769123.

ABSTRACT: Choline kinase α (CHKα) plays a crucial role in the regulation of membrane phospholipid synthesis and has oncogenic properties in vitro. We have analyzed the expression of CHKα in cell lines derived from pancreatic ductal adenocarcinoma (PDAC) and have found increased CHKα expression, associated with differentiation. CHKα protein expression was directly correlated with sensitivity to MN58b, a CHKα inhibitor that reduced cell growth through the induction of apoptosis. Accordingly, CHKα knockdown led to reduced drug sensitivity. In addition, we found that gemcitabine-resistant PDAC cells displayed enhanced sensitivity to CHKα inhibition and, in vitro, MN58b had additive or synergistic effects with gemcitabine, 5-fluorouracil, and oxaliplatin, three active drugs in the treatment of PDAC. Using tissue microarrays, CHKα was found to be overexpressed in 90% of pancreatic tumors. While cytoplasmic CHKα did not relate to survival, nuclear CHKα distribution was observed in 43% of samples and was associated with longer survival, especially among patients with well/moderately differentiated tumors. To identify the mechanisms involved in resistance to CHKα inhibitors, we cultured IMIM-PC-2 cells with increasingly higher concentrations of MN58b and isolated a subline with a 30-fold higher IC50. RNA-Seq analysis identified upregulation of ABCB1 and ABCB4 multidrug resistance transporters, and functional studies confirmed that their upregulation is the main mechanism involved in resistance. Overall, our findings support the notion that CHKα inhibition merits further attention as a therapeutic option in patients with PDAC and that expression levels may predict response.

20 Article BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis. 2016

Richart, Laia / Carrillo-de Santa Pau, Enrique / Río-Machín, Ana / de Andrés, Mónica P / Cigudosa, Juan C / Lobo, Víctor J Sánchez-Arévalo / Real, Francisco X. ·Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Center-CNIO, Madrid 28029, Spain. · Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center-CNIO, Madrid 28029, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain. ·Nat Commun · Pubmed #26729287.

ABSTRACT: c-MYC oncogene is deregulated in most human tumours. Histone marks associated with transcriptionally active genes define high-affinity c-MYC targets. The mechanisms involved in their recognition by c-MYC are unknown. Here we report that c-MYC interacts with BPTF, a core subunit of the NURF chromatin-remodelling complex. BPTF is required for the activation of the full c-MYC transcriptional programme in fibroblasts. BPTF knockdown leads to decreased c-MYC recruitment to DNA and changes in chromatin accessibility. In Bptf-null MEFs, BPTF is necessary for c-MYC-driven proliferation, G1-S progression and replication stress, but not for c-MYC-driven apoptosis. Bioinformatics analyses unveil that BPTF levels correlate positively with c-MYC-driven transcriptional signatures. In vivo, Bptf inactivation in pre-neoplastic pancreatic acinar cells significantly delays tumour development and extends survival. Our findings uncover BPTF as a crucial c-MYC co-factor required for its biological activity and suggest that the BPTF-c-MYC axis is a potential therapeutic target in cancer.

21 Article The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice. 2016

Martinelli, Paola / Madriles, Francesc / Cañamero, Marta / Pau, Enrique Carrillo-de Santa / Pozo, Natalia Del / Guerra, Carmen / Real, Francisco X. ·Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Comparative Pathology Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·Gut · Pubmed #25596178.

ABSTRACT: BACKGROUND AND AIMS: Gata6 is required to complete and maintain acinar differentiation in the mouse pancreas. Pancreas-specific Gata6 ablation during development causes extensive and persistent acinar-ductal metaplasia, which is considered an initial step of mutant KRas-driven carcinogenesis. Therefore, the Gata6-null pancreas might represent a tumour-prone environment. We investigated whether Gata6 plays a role during pancreatic tumorigenesis. DESIGN: We analysed genetically engineered mouse models and human pancreatic ductal adenocarcinoma (PDAC) cell lines, using a combination of histopathological studies, genome-wide expression and chromatin immunoprecipitation experiments to understand the role of Gata6 in the initiation and progression of KRas(G12V)-driven tumours RESULTS: We show that Gata6 maintains the acinar differentiation programme, both directly and indirectly, and it concomitantly suppresses ectopic programmes in the pancreas. Gata6 ablation renders acinar cells more sensitive to KRas(G12V), thereby accelerating tumour development. Gata6 expression is spontaneously lost in a mouse model of KRas(G12V)-driven PDAC, in association with altered cell differentiation. Using a combination of ChIP-Seq and RNA-Seq, we show that Gata6 exerts its tumour-suppressive effect through the promotion of cell differentiation, the suppression of inflammatory pathways, and the direct repression of cancer-related pathways. Among them is the epidermal growth factor receptor (EGFR) pathway, the activity of which is upregulated in the normal and preneoplastic Gata6-null pancreas. Accordingly, GATA6-silencing in human PDAC cells leads to an upregulation of EGFR. CONCLUSIONS: We propose that, in the pancreas, Gata6 acts as a tumour suppressor by enforcing acinar cell differentiation, by directly and indirectly repressing ectopic differentiation programmes, and by regulating crucial cancer-related gene expression pathways.

22 Article Identification of a Three-Biomarker Panel in Urine for Early Detection of Pancreatic Adenocarcinoma. 2015

Radon, Tomasz P / Massat, Nathalie J / Jones, Richard / Alrawashdeh, Wasfi / Dumartin, Laurent / Ennis, Darren / Duffy, Stephen W / Kocher, Hemant M / Pereira, Stephen P / Guarner posthumous, Luisa / Murta-Nascimento, Cristiane / Real, Francisco X / Malats, Núria / Neoptolemos, John / Costello, Eithne / Greenhalf, William / Lemoine, Nick R / Crnogorac-Jurcevic, Tatjana. ·Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. · Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom. · MS Bioworks, LLC, Ann Arbor, Michigan. · Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. · Institute for Liver and Digestive Health, University College London, London, United Kingdom. · Hospital General Universitari Vall Hebron, Barcelona, Spain. · Hospital del Mar - Parc de Salut Mar, Barcelona, Spain. · Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain. · The NIHR Liverpool Pancreas Biomedical Research Unit, Liverpool, United Kingdom. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. t.c.jurcevic@qmul.ac.uk. ·Clin Cancer Res · Pubmed #26240291.

ABSTRACT: PURPOSE: Noninvasive biomarkers for early detection of pancreatic ductal adenocarcinoma (PDAC) are currently not available. Here, we aimed to identify a set of urine proteins able to distinguish patients with early-stage PDAC from healthy individuals. EXPERIMENTAL DESIGN: Proteomes of 18 urine samples from healthy controls, chronic pancreatitis, and patients with PDAC (six/group) were assayed using GeLC/MS/MS analysis. The selected biomarkers were subsequently validated with ELISA assays using multiple logistic regression applied to a training dataset in a multicenter cohort comprising 488 urine samples. RESULTS: LYVE-1, REG1A, and TFF1 were selected as candidate biomarkers. When comparing PDAC (n = 192) with healthy (n = 87) urine specimens, the resulting areas under the receiver-operating characteristic curves (AUC) of the panel were 0.89 [95% confidence interval (CI), 0.84-0.94] in the training (70% of the data) and 0.92 (95% CI, 0.86-0.98) in the validation (30% of the data) datasets. When comparing PDAC stage I-II (n = 71) with healthy urine specimens, the panel achieved AUCs of 0.90 (95% CI, 0.84-0.96) and 0.93 (95% CI, 0.84-1.00) in the training and validation datasets, respectively. In PDAC stage I-II and healthy samples with matching plasma CA19.9, the panel achieved a higher AUC of 0.97 (95% CI, 0.94-0.99) than CA19.9 (AUC = 0.88; 95% CI, 0.81-0.95, P = 0.005). Adding plasma CA19.9 to the panel increased the AUC from 0.97 (95% CI, 0.94-0.99) to 0.99 (95% CI, 0.97-1.00, P = 0.04), but did not improve the comparison of stage I-IIA PDAC (n = 17) with healthy urine. CONCLUSIONS: We have established a novel, three-protein biomarker panel that is able to detect patients with early-stage pancreatic cancer in urine specimens.

23 Article PanGen-Fam: Spanish registry of hereditary pancreatic cancer. 2015

Mocci, E / Guillen-Ponce, C / Earl, J / Marquez, M / Solera, J / Salazar-López, M-T / Calcedo-Arnáiz, C / Vázquez-Sequeiros, E / Montans, J / Muñoz-Beltrán, M / Vicente-Bártulos, A / González-Gordaliza, C / Sanjuanbenito, A / Guerrero, C / Mendía, E / Lisa, E / Lobo, E / Martínez, J C / Real, F X / Malats, N / Carrato, A. ·Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Molecular Oncogenetics Unit, Institute of Medical and Molecular Genetics, La Paz Hospital, Madrid, Spain. · Digestive Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Pathology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Radiology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Surgery Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·Eur J Cancer · Pubmed #26212471.

ABSTRACT: PURPOSE: To describe the organisation of the registry and the preliminary results in terms of characteristics of high-risk pancreatic ductal adenocarcinoma (PDAC) families recruited to date and findings of the screening programme. To compare early onset sporadic cases (⩽50 years), sporadic cases (>50 years) and cases with family history of cancer, for PDAC possible risk factors. METHODS/PATIENTS: Families with hereditary cancer syndromes predisposing to PDAC were recruited from two main sources: Spanish hospitals participating in PanGenEU, a pan-European multicentre case-control study, and their genetic counseling unit. Individuals at high-risk of PDAC were enrolled into a screening programme, consisting of Endoscopic ultrasound, computerised tomography, magnetic resonance imaging. Genetic testing of candidate genes was offered according to each patient's risk. RESULTS: Among 577 consecutive PDAC cases, recruited via PanGenEU, 36 (6%) had ⩾2 first-degree relative with PDAC: Familial pancreatic cancer (FPC). So far PanGen-Fam has recruited 42 high-risk PDAC families; 25 (60%) had FPC. Five index cases with cancer were positive for BRCA2 and one for BRCA1 germline mutations. In the second year of prospective PDAC screening, one neuroendocrine tumour and a high-grade dysplasia lesion suspicious of carcinoma were diagnosed among 41 high-risk individuals. Furthermore EUS detected chronic-pancreatitis-like parenchymal changes in 15 patients. CONCLUDING STATEMENT: The identification and recruitment of PDAC high-risk families into the PanGen-Fam registry provides an opportunity to detect early onset cancer and precursor pancreatic cancer lesions at a potentially curative stage and to increase the knowledge of the natural history of the disease.

24 Article Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. 2014

Hoskins, Jason W / Jia, Jinping / Flandez, Marta / Parikh, Hemang / Xiao, Wenming / Collins, Irene / Emmanuel, Mickey A / Ibrahim, Abdisamad / Powell, John / Zhang, Lizhi / Malats, Nuria / Bamlet, William R / Petersen, Gloria M / Real, Francisco X / Amundadottir, Laufey T. ·Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain. · Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain. · Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and. · Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA. · Department of Laboratory Medicine and Pathology and. · Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and. · Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain amundadottirl@mail.nih.gov. ·Carcinogenesis · Pubmed #25233928.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is driven by the accumulation of somatic mutations, epigenetic modifications and changes in the micro-environment. New approaches to investigating disruptions of gene expression networks promise to uncover key regulators and pathways in carcinogenesis. We performed messenger RNA-sequencing in pancreatic normal (n = 10) and tumor (n = 8) derived tissue samples, as well as in pancreatic cancer cell lines (n = 9), to determine differential gene expression (DE) patterns. Sub-network enrichment analyses identified HNF1A as the regulator of the most significantly and consistently dysregulated expression sub-network in pancreatic tumor tissues and cells (median P = 7.56×10(-7), median rank = 1, range = 1-25). To explore the effects of HNF1A expression in pancreatic tumor-derived cells, we generated stable HNF1A-inducible clones in two pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and observed growth inhibition (5.3-fold, P = 4.5×10(-5) for MIA PaCa-2 clones; 7.2-fold, P = 2.2×10(-5) for PANC-1 clones), and a G0/G1 cell cycle arrest and apoptosis upon induction. These effects correlated with HNF1A-induced down-regulation of 51 of 84 cell cycle genes (e.g. E2F1, CDK2, CDK4, MCM2/3/4/5, SKP2 and CCND1), decreased expression of anti-apoptotic genes (e.g. BIRC2/5/6 and AKT) and increased expression of pro-apoptotic genes (e.g. CASP4/9/10 and APAF1). In light of the established role of HNF1A in the regulation of pancreatic development and homeostasis, our data suggest that it also functions as an important tumor suppressor in the pancreas.

25 Article Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. 2014

Hermann, Patrick C / Sancho, Patricia / Cañamero, Marta / Martinelli, Paola / Madriles, Francesc / Michl, Patrick / Gress, Thomas / de Pascual, Ricardo / Gandia, Luis / Guerra, Carmen / Barbacid, Mariano / Wagner, Martin / Vieira, Catarina R / Aicher, Alexandra / Real, Francisco X / Sainz, Bruno / Heeschen, Christopher. ·Stem Cells and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Comparative Pathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University of Marburg, Marburg, Germany. · Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain. · Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Department of Internal Medicine I, Ulm University, Ulm, Germany. · Stem Cells and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Electronic address: bruno.sainz@uam.es. · Stem Cells and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, UK. Electronic address: c.heeschen@qmul.ac.uk. ·Gastroenterology · Pubmed #25127677.

ABSTRACT: BACKGROUND & AIMS: Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. METHODS: We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. RESULTS: Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting differentiation toward an acinar cell program. CONCLUSIONS: In mice, nicotine promotes pancreatic carcinogenesis and tumor development via down-regulation of Gata6 to induce acinar cell dedifferentiation.

Next