Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Mihir Rajurkar
Based on 3 articles published since 2010
(Why 3 articles?)
||||

Between 2010 and 2020, Mihir Rajurkar wrote the following 3 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. 2019

Ligorio, Matteo / Sil, Srinjoy / Malagon-Lopez, Jose / Nieman, Linda T / Misale, Sandra / Di Pilato, Mauro / Ebright, Richard Y / Karabacak, Murat N / Kulkarni, Anupriya S / Liu, Ann / Vincent Jordan, Nicole / Franses, Joseph W / Philipp, Julia / Kreuzer, Johannes / Desai, Niyati / Arora, Kshitij S / Rajurkar, Mihir / Horwitz, Elad / Neyaz, Azfar / Tai, Eric / Magnus, Neelima K C / Vo, Kevin D / Yashaswini, Chittampalli N / Marangoni, Francesco / Boukhali, Myriam / Fatherree, Jackson P / Damon, Leah J / Xega, Kristina / Desai, Rushil / Choz, Melissa / Bersani, Francesca / Langenbucher, Adam / Thapar, Vishal / Morris, Robert / Wellner, Ulrich F / Schilling, Oliver / Lawrence, Michael S / Liss, Andrew S / Rivera, Miguel N / Deshpande, Vikram / Benes, Cyril H / Maheswaran, Shyamala / Haber, Daniel A / Fernandez-Del-Castillo, Carlos / Ferrone, Cristina R / Haas, Wilhelm / Aryee, Martin J / Ting, David T. ·Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. · Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. · Clinic of Surgery, UKSH Campus Lübeck, Germany. · Institute of Pathology, University Medical Center Freiburg, Germany. · Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Electronic address: aryee.martin@mgh.harvard.edu. · Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address: dting1@mgh.harvard.edu. ·Cell · Pubmed #31155233.

ABSTRACT: Single-cell technologies have described heterogeneity across tissues, but the spatial distribution and forces that drive single-cell phenotypes have not been well defined. Combining single-cell RNA and protein analytics in studying the role of stromal cancer-associated fibroblasts (CAFs) in modulating heterogeneity in pancreatic cancer (pancreatic ductal adenocarcinoma [PDAC]) model systems, we have identified significant single-cell population shifts toward invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO) phenotypes linked with mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling. Using high-content digital imaging of RNA in situ hybridization in 195 PDAC tumors, we quantified these EMT and PRO subpopulations in 319,626 individual cancer cells that can be classified within the context of distinct tumor gland "units." Tumor gland typing provided an additional layer of intratumoral heterogeneity that was associated with differences in stromal abundance and clinical outcomes. This demonstrates the impact of the stroma in shaping tumor architecture by altering inherent patterns of tumor glands in human PDAC.

2 Article IKBKE Is Required during KRAS-Induced Pancreatic Tumorigenesis. 2017

Rajurkar, Mihir / Dang, Kyvan / Fernandez-Barrena, Maite G / Liu, Xiangfan / Fernandez-Zapico, Martin E / Lewis, Brian C / Mao, Junhao. ·Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts. · Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota. · Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts. junhao.mao@umassmed.edu. ·Cancer Res · Pubmed #28069799.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies lacking effective therapeutic strategies. Here, we show that the noncanonical IκB-related kinase, IKBKE, is a critical oncogenic effector during KRAS-induced pancreatic transformation. Loss of IKBKE inhibits the initiation and progression of pancreatic tumors in mice carrying pancreatic-specific KRAS activation. Mechanistically, we demonstrate that this protumoral effect of IKBKE involves the activation of GLI1 and AKT signaling and is independent of the levels of activity of the NF-κB pathway. Further analysis reveals that IKBKE regulates GLI1 nuclear translocation and promotes the reactivation of AKT post-inhibition of mTOR in PDAC cells. Interestingly, combined inhibition of IKBKE and mTOR synergistically blocks pancreatic tumor growth. Together, our findings highlight the functional importance of IKBKE in pancreatic cancer, support the evaluation of IKBKE as a therapeutic target in PDAC, and suggest IKBKE inhibition as a strategy to improve efficacy of mTOR inhibitors in the clinic. Cancer Res; 77(2); 320-9. ©2017 AACR.

3 Article The activity of Gli transcription factors is essential for Kras-induced pancreatic tumorigenesis. 2012

Rajurkar, Mihir / De Jesus-Monge, Wilfredo E / Driscoll, David R / Appleman, Victoria A / Huang, He / Cotton, Jennifer L / Klimstra, David S / Zhu, Lihua J / Simin, Karl / Xu, Lan / McMahon, Andrew P / Lewis, Brian C / Mao, Junhao. ·Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ·Proc Natl Acad Sci U S A · Pubmed #22493246.

ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive human malignancies, is thought to be initiated by KRAS activation. Here we find that transcriptional activation mediated by the Gli family of transcription factors, although dispensable for pancreatic development, is required for Kras-induced proliferation and survival in primary pancreatic epithelial cells in culture and for Kras-driven pancreatic intraepithelial neoplasia and PDAC formation in vivo. Further, ectopic Gli1 activation in the mouse pancreas accelerates Kras-driven tumor formation, underscoring the importance of Gli transcription factors in pancreatic tumorigenesis. Interestingly, we demonstrate Gli-regulated I-kappa-B kinase epsilon (IKBKE) and NF-κB activity in pancreatic cancer cells and show that this activity is a critical downstream mediator for Gli-dependent PDAC cell transformation and survival. Together, these studies demonstrate the requirement for Gli in Kras-dependent pancreatic epithelial transformation, suggest a mechanism of Gli-NF-κB oncogenic activation, and provide genetic evidence supporting the therapeutic targeting of Gli activity in pancreatic cancer.