Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Jose Ramón Quirós
Based on 11 articles published since 2010
(Why 11 articles?)
||||

Between 2010 and 2020, J. R. Quirós wrote the following 11 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Healthy lifestyle and the risk of pancreatic cancer in the EPIC study. 2019

Naudin, Sabine / Viallon, Vivian / Hashim, Dana / Freisling, Heinz / Jenab, Mazda / Weiderpass, Elisabete / Perrier, Flavie / McKenzie, Fiona / Bueno-de-Mesquita, H Bas / Olsen, Anja / Tjønneland, Anne / Dahm, Christina C / Overvad, Kim / Mancini, Francesca R / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Katzke, Verena / Kaaks, Rudolf / Bergmann, Manuela / Boeing, Heiner / Peppa, Eleni / Karakatsani, Anna / Trichopoulou, Antonia / Pala, Valeria / Masala, Giovana / Panico, Salvatore / Tumino, Rosario / Sacerdote, Carlotta / May, Anne M / van Gils, Carla H / Rylander, Charlotta / Borch, Kristin Benjaminsen / Chirlaque López, María Dolores / Sánchez, Maria-Jose / Ardanaz, Eva / Quirós, José Ramón / Amiano Exezarreta, Pilar / Sund, Malin / Drake, Isabel / Regnér, Sara / Travis, Ruth C / Wareham, Nick / Aune, Dagfinn / Riboli, Elio / Gunter, Marc J / Duell, Eric J / Brennan, Paul / Ferrari, Pietro. ·Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France. · Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. · Nutritional Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Director Office, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Environment and Radiation section, Agency for Research on Cancer, World Health Organization, Lyon, France. · Departement for Determinants of Chronic Diseases (Former), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepathology, University Medical Center, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark. · CESP, Faculté de médecine (USVQ), Université Paris-Sud, INSERM, Université Paris-Saclay, Villejuif, France. · Inserm UMR1018, Institut Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, France. · Inserm UMR1149, DHU Unit, Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital of Athens, Haidari, Greece. · School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy. · Department of Clinical and Experimental Medecine, University Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, Civic M.P.Arezzo Hospital, Ragusa, Italy. · Unit of Cancer Epidemiology, Città della Salute e della Scienza University, Hospital and Center for Cancer Prevention (CPO), Turin, Italy. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain. · Spanish Consortium for Research and Public Health (CIBERESP), Madrid, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria, Universidad de Granada, Granada, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France. ferrarip@iarc.fr. ·Eur J Epidemiol · Pubmed #31564045.

ABSTRACT: Pancreatic cancer (PC) is a highly fatal cancer with currently limited opportunities for early detection and effective treatment. Modifiable factors may offer pathways for primary prevention. In this study, the association between the Healthy Lifestyle Index (HLI) and PC risk was examined. Within the European Prospective Investigation into Cancer and Nutrition cohort, 1113 incident PC (57% women) were diagnosed from 400,577 participants followed-up for 15 years (median). HLI scores combined smoking, alcohol intake, dietary exposure, physical activity and, in turn, overall and central adiposity using BMI (HLI

2 Article Circulating plasma phospholipid fatty acids and risk of pancreatic cancer in a large European cohort. 2018

Matejcic, M / Lesueur, F / Biessy, C / Renault, A L / Mebirouk, N / Yammine, S / Keski-Rahkonen, P / Li, K / Hémon, B / Weiderpass, E / Rebours, V / Boutron-Ruault, M C / Carbonnel, F / Kaaks, R / Katzke, V / Kuhn, T / Boeing, H / Trichopoulou, A / Palli, D / Agnoli, C / Panico, S / Tumino, R / Sacerdote, C / Quirós, J R / Duell, E J / Porta, M / Sánchez, M J / Chirlaque, M D / Barricarte, A / Amiano, P / Ye, W / Peeters, P H / Khaw, K T / Perez-Cornago, A / Key, T J / Bueno-de-Mesquita, H B / Riboli, E / Vineis, P / Romieu, I / Gunter, M J / Chajès, V. ·International Agency for Research on Cancer, Lyon, France. · Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France. · Institut Curie, Paris, France. · PSL University, Paris, France. · Mines ParisTech, Fontainebleau, France. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Public Health Division of Gipuzkoa, BioDonostia Research institute, San Sebastian, Spain. · Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France. · INSERM, Centre for Research in Epidemiology and Population Health, U1018, Health across Generations Team, Institut Gustave Roussy, Villejuif, France. · Université Paris Sud, UMRS, Villejuif, France. · Department of Gastroenterology, Bicêtre University Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin Bicêtre, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Clinical Medicine and Surgery Department, Università degli Studi di Napoli Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, ASP, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy. · Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy. · EPIC Asturias, Public Health Directorate, Asturias, Spain. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Hospital del Mar Research Institute - IMIM, CIBER Epidemiología y Salud Pública (CIBERESP) and Universitat Autònoma de Barcelona, Barcelona, Spain. · Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Institute for Health Research (IdiSNA), Pamplona, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · MRC-PHE Center for Environment and Health, School of Public Health, Imperial College, London, United Kingdom. ·Int J Cancer · Pubmed #30110135.

ABSTRACT: There are both limited and conflicting data on the role of dietary fat and specific fatty acids in the development of pancreatic cancer. In this study, we investigated the association between plasma phospholipid fatty acids and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The fatty acid composition was measured by gas chromatography in plasma samples collected at recruitment from375 incident pancreatic cancer cases and375 matched controls. Associations of specific fatty acids with pancreatic cancer risk were evaluated using multivariable conditional logistic regression models with adjustment for established pancreatic cancer risk factors. Statistically significant inverse associations were found between pancreatic cancer incidence and levels of heptadecanoic acid (OR

3 Article Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. 2018

Antwi, Samuel O / Bamlet, William R / Pedersen, Katrina S / Chaffee, Kari G / Risch, Harvey A / Shivappa, Nitin / Steck, Susan E / Anderson, Kristin E / Bracci, Paige M / Polesel, Jerry / Serraino, Diego / La Vecchia, Carlo / Bosetti, Cristina / Li, Donghui / Oberg, Ann L / Arslan, Alan A / Albanes, Demetrius / Duell, Eric J / Huybrechts, Inge / Amundadottir, Laufey T / Hoover, Robert / Mannisto, Satu / Chanock, Stephen J / Zheng, Wei / Shu, Xiao-Ou / Stepien, Magdalena / Canzian, Federico / Bueno-de-Mesquita, Bas / Quirós, José Ramon / Zeleniuch-Jacquotte, Anne / Bruinsma, Fiona / Milne, Roger L / Giles, Graham G / Hébert, James R / Stolzenberg-Solomon, Rachael Z / Petersen, Gloria M. ·Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. · Division of Oncology, Washington University, St. Louis, MO, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA. · Cancer Prevention and Control Program, USA. · Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. · Unit of Epidemiology and Biostatistics, Centro di Riferimento Oncologico, Aviano (PN), Italy. · Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. · Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy. · Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA. · Department of Population Health, New York University School of Medicine, New York, NY, USA. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA. · Unit of Nutrition and Cancer, Bellvitge Biomedical Research Institute-IDIBELL, Catalan Institute of Oncology-ICO. L'Hospitalet de Llobregat, Barcelona, Spain. · International Agency for Research on Cancer, World Health Organization, France. · Department of Public Health Solutions, National Institute for Health and Welfare Helsinki, Finland. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, Malaysia. · Public Health Directorate, Asturias, Spain. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia. ·Carcinogenesis · Pubmed #29800239.

ABSTRACT: Diets with high inflammatory potential are suspected to increase risk for pancreatic cancer (PC). Using pooled analyses, we examined whether this association applies to populations from different geographic regions and population subgroups with varying risks for PC, including variation in ABO blood type. Data from six case-control studies (cases, n = 2414; controls, n = 4528) in the Pancreatic Cancer Case-Control Consortium (PanC4) were analyzed, followed by replication in five nested case-control studies (cases, n = 1268; controls, n = 4215) from the Pancreatic Cancer Cohort Consortium (PanScan). Two polymorphisms in the ABO locus (rs505922 and rs8176746) were used to infer participants' blood types. Dietary questionnaire-derived nutrient/food intake was used to compute energy-adjusted dietary inflammatory index (E-DII®) scores to assess inflammatory potential of diet. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted logistic regression. Higher E-DII scores, reflecting greater inflammatory potential of diet, were associated with increased PC risk in PanC4 [ORQ5 versus Q1=2.20, 95% confidence interval (CI) = 1.85-2.61, Ptrend < 0.0001; ORcontinuous = 1.20, 95% CI = 1.17-1.24], and PanScan (ORQ5 versus Q1 = 1.23, 95% CI = 0.92-1.66, Ptrend = 0.008; ORcontinuous = 1.09, 95% CI = 1.02-1.15). As expected, genotype-derived non-O blood type was associated with increased PC risk in both the PanC4 and PanScan studies. Stratified analyses of associations between E-DII quintiles and PC by genotype-derived ABO blood type did not show interaction by blood type (Pinteraction = 0.10 in PanC4 and Pinteraction=0.13 in PanScan). The results show that consuming a pro-inflammatory diet and carrying non-O blood type are each individually, but not interactively, associated with increased PC risk.

4 Article Lifetime and baseline alcohol intakes and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition study. 2018

Naudin, Sabine / Li, Kuanrong / Jaouen, Tristan / Assi, Nada / Kyrø, Cecilie / Tjønneland, Anne / Overvad, Kim / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Védié, Anne-Laure / Boeing, Heiner / Kaaks, Rudolf / Katzke, Verena / Bamia, Christina / Naska, Androniki / Trichopoulou, Antonia / Berrino, Franco / Tagliabue, Giovanna / Palli, Domenico / Panico, Salvatore / Tumino, Rosario / Sacerdote, Carlotta / Peeters, Petra H / Bueno-de-Mesquita, H B As / Weiderpass, Elisabete / Gram, Inger Torhild / Skeie, Guri / Chirlaque, Maria-Dolores / Rodríguez-Barranco, Miguel / Barricarte, Aurelio / Quirós, Jose Ramón / Dorronsoro, Miren / Johansson, Ingegerd / Sund, Malin / Sternby, Hanna / Bradbury, Kathryn E / Wareham, Nick / Riboli, Elio / Gunter, Marc / Brennan, Paul / Duell, Eric J / Ferrari, Pietro. ·Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, University of Paris-Saclay, Villejuif, France. · Institut Gustave Roussy, Villejuif, France. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM U1149, University Paris 7, Paris, France. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Potsdam, Germany. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Hellenic Health Foundation, Athens, Greece. · Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, WHO Collaborating Center for Nutrition and Health, National and Kapodistrian University of Athens, Athens, Greece. · Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy. · Department of Clinical and Experimental Medicine, University Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, Civic M.P.Arezzo Hospital, Ragusa, Italy, Ragusa, Italy. · Unit of Cancer Epidemiology, Hospital and Center for Cancer Prevention (CPO), Città della Salute e della Scienza University, Turin, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala, Malaysia, Lumpur. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Department of Health and Social Sciences, University of Murcia, Murcia, Spain. · Biosanitary Investigation Institute (IBS) of Granada, University Hospital and University of Granada, Granada, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Navarra Institute for Health Research (IdiSNA), Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Subdirección de Salud Pública de Gipuzkoa, Gobierno Vasco, San Sebastian, Spain. · Department of Odontology, Cariology, Umeå University, Umeå, Sweden. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom. · School of Public Health, Imperial College London, London, United Kingdom. · Nutrition and Epidemiology Group, International Agency for Research on Cancer, Lyon, France. · Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. ·Int J Cancer · Pubmed #29524225.

ABSTRACT: Recent evidence suggested a weak relationship between alcohol consumption and pancreatic cancer (PC) risk. In our study, the association between lifetime and baseline alcohol intakes and the risk of PC was evaluated, including the type of alcoholic beverages and potential interaction with smoking. Within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, 1,283 incident PC (57% women) were diagnosed from 476,106 cancer-free participants, followed up for 14 years. Amounts of lifetime and baseline alcohol were estimated through lifestyle and dietary questionnaires, respectively. Cox proportional hazard models with age as primary time variable were used to estimate PC hazard ratios (HR) and their 95% confidence interval (CI). Alcohol intake was positively associated with PC risk in men. Associations were mainly driven by extreme alcohol levels, with HRs comparing heavy drinkers (>60 g/day) to the reference category (0.1-4.9 g/day) equal to 1.77 (95% CI: 1.06, 2.95) and 1.63 (95% CI: 1.16, 2.29) for lifetime and baseline alcohol, respectively. Baseline alcohol intakes from beer (>40 g/day) and spirits/liquors (>10 g/day) showed HRs equal to 1.58 (95% CI: 1.07, 2.34) and 1.41 (95% CI: 1.03, 1.94), respectively, compared to the reference category (0.1-2.9 g/day). In women, HR estimates did not reach statistically significance. The alcohol and PC risk association was not modified by smoking status. Findings from a large prospective study suggest that baseline and lifetime alcohol intakes were positively associated with PC risk, with more apparent risk estimates for beer and spirits/liquors than wine intake.

5 Article Mediterranean diet and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition cohort. 2017

Molina-Montes, Esther / Sánchez, María-José / Buckland, Genevieve / Bueno-de-Mesquita, H B As / Weiderpass, Elisabete / Amiano, Pilar / Wark, Petra A / Kühn, Tilman / Katzke, Verena / Huerta, José María / Ardanaz, Eva / Quirós, José Ramón / Affret, Aurélie / His, Mathilde / Boutron-Ruault, Marie-Christine / Peeters, Petra H / Ye, Weimin / Sund, Malin / Boeing, Heiner / Iqbal, Khalid / Ohlsson, Bodil / Sonestedt, Emily / Tjønneland, Anne / Petersen, Kristina En / Travis, Ruth C / Skeie, Guri / Agnoli, Claudia / Panico, Salvatore / Palli, Domenico / Tumino, Rosario / Sacerdote, Carlotta / Freisling, Heinz / Huybrechts, Inge / Overvad, Kim / Trichopoulou, Antonia / Bamia, Christina / Vasilopoulou, Effie / Wareham, Nick / Khaw, Kay-Tee / Cross, Amanda J / Ward, Heather A / Riboli, Elio / Duell, Eric J. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. · Andalusian School of Public Health, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Global eHealth Unit, Department of Primary Care and Public Health, The School of Public Health, Imperial College London, London, UK. · Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP Generations and Health Team, INSERM, Villejuif, France. · Gustave Roussy, Villejuif F-94805, France. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Department of Internal Medicine, Skane University Hospital, Malmö, Sweden. · Department of Clinical Sciences, Lund University, Malmö, Sweden. · Danish Cancer Society Research Center, Unit of Diet, Genes and Environment, Copenhagen, Denmark. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Cancer Registry and Histopathology Unit, 'Civic-M.P.Arezzo' Hospital, ASP Ragusa, Ragusa, Italy. · Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France. · Department of Public Health, Section of Epidemiology, Aarhus University, Aarhus, Denmark. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece. · Medical Research Council (MCR), Epidemiology Unit, Cambridge, UK. · University of Cambridge, School of Clinical Medicine, Cambridge, UK. ·Br J Cancer · Pubmed #28170373.

ABSTRACT: BACKGROUND: The Mediterranean diet (MD) has been proposed as a means for cancer prevention, but little evidence has been accrued regarding its potential to prevent pancreatic cancer. We investigated the association between the adherence to the MD and pancreatic cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS: Over half a million participants from 10 European countries were followed up for over 11 years, after which 865 newly diagnosed exocrine pancreatic cancer cases were identified. Adherence to the MD was estimated through an adapted score without the alcohol component (arMED) to discount alcohol-related harmful effects. Cox proportional hazards regression models, stratified by age, sex and centre, and adjusted for energy intake, body mass index, smoking status, alcohol intake and diabetes status at recruitment, were used to estimate hazard ratios (HRs) associated with pancreatic cancer and their corresponding 95% confidence intervals (CIs). RESULTS: Adherence to the arMED score was not associated with risk of pancreatic cancer (HR high vs low adherence=0.99; 95% CI: 0.77-1.26, and HR per increments of two units in adherence to arMED=1.00; 95% CI: 0.94-1.06). There was no convincing evidence for heterogeneity by smoking status, body mass index, diabetes or European region. There was also no evidence of significant associations in analyses involving microscopically confirmed cases, plausible reporters of energy intake or other definitions of the MD pattern. CONCLUSIONS: A high adherence to the MD is not associated with pancreatic cancer risk in the EPIC study.

6 Article Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. 2016

Zhang, Mingfeng / Wang, Zhaoming / Obazee, Ofure / Jia, Jinping / Childs, Erica J / Hoskins, Jason / Figlioli, Gisella / Mocci, Evelina / Collins, Irene / Chung, Charles C / Hautman, Christopher / Arslan, Alan A / Beane-Freeman, Laura / Bracci, Paige M / Buring, Julie / Duell, Eric J / Gallinger, Steven / Giles, Graham G / Goodman, Gary E / Goodman, Phyllis J / Kamineni, Aruna / Kolonel, Laurence N / Kulke, Matthew H / Malats, Núria / Olson, Sara H / Sesso, Howard D / Visvanathan, Kala / White, Emily / Zheng, Wei / Abnet, Christian C / Albanes, Demetrius / Andreotti, Gabriella / Brais, Lauren / Bueno-de-Mesquita, H Bas / Basso, Daniela / Berndt, Sonja I / Boutron-Ruault, Marie-Christine / Bijlsma, Maarten F / Brenner, Hermann / Burdette, Laurie / Campa, Daniele / Caporaso, Neil E / Capurso, Gabriele / Cavestro, Giulia Martina / Cotterchio, Michelle / Costello, Eithne / Elena, Joanne / Boggi, Ugo / Gaziano, J Michael / Gazouli, Maria / Giovannucci, Edward L / Goggins, Michael / Gross, Myron / Haiman, Christopher A / Hassan, Manal / Helzlsouer, Kathy J / Hu, Nan / Hunter, David J / Iskierka-Jazdzewska, Elzbieta / Jenab, Mazda / Kaaks, Rudolf / Key, Timothy J / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Krogh, Vittorio / Kupcinskas, Juozas / Kurtz, Robert C / Landi, Maria T / Landi, Stefano / Le Marchand, Loic / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Neale, Rachel E / Oberg, Ann L / Panico, Salvatore / Patel, Alpa V / Peeters, Petra H M / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Purdue, Mark / Quiros, J Ramón / Riboli, Elio / Rothman, Nathaniel / Scarpa, Aldo / Scelo, Ghislaine / Shu, Xiao-Ou / Silverman, Debra T / Soucek, Pavel / Strobel, Oliver / Sund, Malin / Małecka-Panas, Ewa / Taylor, Philip R / Tavano, Francesca / Travis, Ruth C / Thornquist, Mark / Tjønneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Vashist, Yogesh / Vodicka, Pavel / Wactawski-Wende, Jean / Wentzensen, Nicolas / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Kooperberg, Charles / Risch, Harvey A / Jacobs, Eric J / Li, Donghui / Fuchs, Charles / Hoover, Robert / Hartge, Patricia / Chanock, Stephen J / Petersen, Gloria M / Stolzenberg-Solomon, Rachael S / Wolpin, Brian M / Kraft, Peter / Klein, Alison P / Canzian, Federico / Amundadottir, Laufey T. ·Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA. · New York University Cancer Institute, New York, New York, USA,. · Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA. · Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain. · Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. · Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. · Group Health Research Institute, Seattle, Washington, USA,. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. · Genetic and Molecular Epidemiology Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain. · Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. · Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. · Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. · Department of Epidemiology, University of Washington, Seattle, Washington, USA. · Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. · Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Laboratory Medicine, University Hospital of Padova, Padua, Italy,. · Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, F-94805, Villejuif, France. · University Paris Sud, UMRS 1018, F-94805, Villejuif, France. · IGR, F-94805, Villejuif, France. · Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Biology, University of Pisa, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy. · Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · Massachusetts Veteran's Epidemiology, Research, and Information Center, Geriatric Research Education and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA. · Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA. · Department of Pathology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Department of Medicine, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Department of Oncology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA. · Preventive Medicine, University of Southern California, Los Angeles, California, USA. · Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. · Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Harvard School of Public Health, Boston, Massachusetts, USA. · Harvard Medical School, Boston, Massachusetts, USA. · Department of Hematology, Medical University of Łodz, Łodz, Poland. · International Agency for Research on Cancer (IARC), Lyon, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom. · School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA. · Centre de Recerca en Epidemiologia Ambiental (CREAL), CIBER Epidemiología y Salud Pública (CIBERESP), Spain. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain. · National School of Public Health, Athens, Greece. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. · Oncology Department, ASL1 Massa Carrara, Massa Carrara, Italy. · National Institute for Health and Welfare, Department of Chronic Disease Prevention, Helsinki, Finland. · Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Dipartimento di Medicina Clinica E Chirurgia, Federico II Univeristy, Naples, Italy. · Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Public Health and Participation Directorate, Asturias, Spain. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Department of Surgical and Peroperative Sciences, Umeå University, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy. · Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark. · Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. · Hellenic Health Foundation, Athens, Greece. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, Hamburg, Germany. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. · Department of Social and Preventive Medicine, University at Buffalo, Buffalo, New York, USA. · New York University Cancer Institute, New York, New York, USA. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA. · Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA. · Department of Epidemiology, the Bloomberg School of Public Health, Baltimore, Maryland, USA. ·Oncotarget · Pubmed #27579533.

ABSTRACT: Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.

7 Article Sweet-beverage consumption and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). 2016

Navarrete-Muñoz, Eva M / Wark, Petra A / Romaguera, Dora / Bhoo-Pathy, Nirmala / Michaud, Dominique / Molina-Montes, Esther / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Boutron-Ruault, Marie-Christine / Clavel-Chapelon, Françoise / Fagherazzi, Guy / Katzke, Verena A / Kühn, Tilman / Steffen, Annika / Trichopoulou, Antonia / Klinaki, Eleni / Papatesta, Eleni-Maria / Masala, Giovanna / Krogh, Vittorio / Tumino, Rosario / Naccarati, Alessio / Mattiello, Amalia / Peeters, Petra H / Rylander, Charlotta / Parr, Christine L / Skeie, Guri / Weiderpass, Elisabete / Quirós, J Ramón / Duell, Eric J / Dorronsoro, Miren / Huerta, José María / Ardanaz, Eva / Wareham, Nick / Khaw, Kay-Tee / Travis, Ruth C / Key, Tim / Stepien, Magdalena / Freisling, Heinz / Riboli, Elio / Bueno-de-Mesquita, H Bas. ·Department of Public Health, Faculty of Medicine, Miguel Hernández University, Alicante, Spain; The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; · Global eHealth Unit, Department of Primary Care and Public Health. · Department of Epidemiology and Biostatistics, and The Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain; Medical Research Institute of Palma, University Hospital Son Espases, Palma de Mallorca, Spain; mariaadoracion.romaguera@ssib.es. · Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; · Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Andalusian School of Public Health. Biomedical Research Institute of Granada; University Hospital of Granada/Granada University, Granada, Spain; · Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen Ø, Denmark; · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark; · Centre for Research in Epidemiology and Population Health, U1018, Nutrition, Hormones and Women's Health team, National Institute for Health and Medical Research, Villejuif, France; UMRS 1018, Université Paris Sud, Villejuif, France; Institut Gustave Roussy, Villejuif, France; · Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany; · Hellenic Health Foundation, Athens, Greece; Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; · Hellenic Health Foundation, Athens, Greece; · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy; · Epidemiology and Prevention Unit. Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy; · Human Genetics Foundation,Torino, Molecular and Genetic Epidemiology Unit, Torino, Italy; · Dipartamento di Medicina Clinica e Chirurgia, Federico II University of Naples, Naples, Italy; · MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands; · Department of Community Medicine, University of Tromsø-the Arctic University of Norway, Tromsø, Norway; · Department of Chronic Diseases, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; · Department of Community Medicine, University of Tromsø-the Arctic University of Norway, Tromsø, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Samfundet Folkhälsan, Helsinki, Finland; · Public Health Directorate, Asturias, Spain; · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Public Health Direction Biodonostia Basque Regional Health Department, San Sebastian, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; · The Spanish Biomedical Research Centre in Epidemology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain; Navarre Public Health Institute, Pamplona, Spain; · Medical Research Council Epidemiology Unit. · Department of Public Health and Primary Care, and Clinical Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom; · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; · Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France; · Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, Netherlands; and. · Department of Epidemiology and Biostatistics, and. · Department of Epidemiology and Biostatistics, and Julius Centre University of Malaya, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, Netherlands; and Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, Netherlands. ·Am J Clin Nutr · Pubmed #27510540.

ABSTRACT: BACKGROUND: The consumption of sweet beverages has been associated with greater risk of type 2 diabetes and obesity, which may be involved in the development of pancreatic cancer. Therefore, it has been hypothesized that sweet beverages may increase pancreatic cancer risk as well. OBJECTIVE: We examined the association between sweet-beverage consumption (including total, sugar-sweetened, and artificially sweetened soft drink and juice and nectar consumption) and pancreatic cancer risk. DESIGN: The study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. A total of 477,199 participants (70.2% women) with a mean age of 51 y at baseline were included, and 865 exocrine pancreatic cancers were diagnosed after a median follow-up of 11.60 y (IQR: 10.10-12.60 y). Sweet-beverage consumption was assessed with the use of validated dietary questionnaires at baseline. HRs and 95% CIs were obtained with the use of multivariable Cox regression models that were stratified by age, sex, and center and adjusted for educational level, physical activity, smoking status, and alcohol consumption. Associations with total soft-drink consumption were adjusted for juice and nectar consumption and vice versa. RESULTS: Total soft-drink consumption (HR per 100 g/d: 1.03; 95% CI: 0.99, 1.07), sugar-sweetened soft-drink consumption (HR per 100 g/d: 1.02; 95% CI: 0.97, 1.08), and artificially sweetened soft-drink consumption (HR per 100 g/d: 1.04; 95% CI: 0.98, 1.10) were not associated with pancreatic cancer risk. Juice and nectar consumption was inversely associated with pancreatic cancer risk (HR per 100 g/d: 0.91; 95% CI: 0.84, 0.99); this association remained statistically significant after adjustment for body size, type 2 diabetes, and energy intake. CONCLUSIONS: Soft-drink consumption does not seem to be associated with pancreatic cancer risk. Juice and nectar consumption might be associated with a modest decreased pancreatic cancer risk. Additional studies with specific information on juice and nectar subtypes are warranted to clarify these results.

8 Article Flavonoid and lignan intake and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2016

Molina-Montes, Esther / Sánchez, María-José / Zamora-Ros, Raul / Bueno-de-Mesquita, H B As / Wark, Petra A / Obon-Santacana, Mireia / Kühn, Tilman / Katzke, Verena / Travis, Ruth C / Ye, Weimin / Sund, Malin / Naccarati, Alessio / Mattiello, Amalia / Krogh, Vittorio / Martorana, Caterina / Masala, Giovanna / Amiano, Pilar / Huerta, José-María / Barricarte, Aurelio / Quirós, José-Ramón / Weiderpass, Elisabete / Angell Åsli, Lene / Skeie, Guri / Ericson, Ulrika / Sonestedt, Emily / Peeters, Petra H / Romieu, Isabelle / Scalbert, Augustin / Overvad, Kim / Clemens, Matthias / Boeing, Heiner / Trichopoulou, Antonia / Peppa, Eleni / Vidalis, Pavlos / Khaw, Kay-Tee / Wareham, Nick / Olsen, Anja / Tjønneland, Anne / Boutroun-Rualt, Marie-Christine / Clavel-Chapelon, Françoise / Cross, Amanda J / Lu, Yunxia / Riboli, Elio / Duell, Eric J. ·Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, GRANADA, Hospitales Universitarios De Granada/Universidad De Granada, Granada, Spain. · CIBERESP, CIBER Epidemiología Y Salud Pública, Spain. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, the School of Public Health, Imperial College London, London, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Global eHealth Unit, Department of Primary Care and Public Health, the School of Public Health, Imperial College London, London, United Kingdom. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Molecular and Genetic Epidemiology Unit, HuGeF-Human Genetics Foundation, Torino, Italy. · Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. · Cancer Registry ASP, Ragusa, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Public Health Institute of Navarra, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, the Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece. · University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Epidemiology Unit, Medical Research Council, Cambridge, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Inserm, CESP Centre for Research in Epidemiology and Population Health, France. ·Int J Cancer · Pubmed #27184434.

ABSTRACT: Despite the potential cancer preventive effects of flavonoids and lignans, their ability to reduce pancreatic cancer risk has not been demonstrated in epidemiological studies. Our aim was to examine the association between dietary intakes of flavonoids and lignans and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A total of 865 exocrine pancreatic cancer cases occurred after 11.3 years of follow-up of 477,309 cohort members. Dietary flavonoid and lignan intake was estimated through validated dietary questionnaires and the US Department of Agriculture (USDA) and Phenol Explorer databases. Hazard ratios (HR) and 95% confidence intervals (CIs) were calculated using age, sex and center-stratified Cox proportional hazards models, adjusted for energy intake, body mass index (BMI), smoking, alcohol and diabetes status. Our results showed that neither overall dietary intake of flavonoids nor of lignans were associated with pancreatic cancer risk (multivariable-adjusted HR for a doubling of intake = 1.03, 95% CI: 0.95-1.11 and 1.02; 95% CI: 0.89-1.17, respectively). Statistically significant associations were also not observed by flavonoid subclasses. An inverse association between intake of flavanones and pancreatic cancer risk was apparent, without reaching statistical significance, in microscopically confirmed cases (HR for a doubling of intake = 0.96, 95% CI: 0.91-1.00). In conclusion, we did not observe an association between intake of flavonoids, flavonoid subclasses or lignans and pancreatic cancer risk in the EPIC cohort.

9 Article Leukocyte telomere length in relation to pancreatic cancer risk: a prospective study. 2014

Campa, Daniele / Mergarten, Björn / De Vivo, Immaculata / Boutron-Ruault, Marie-Christine / Racine, Antoine / Severi, Gianluca / Nieters, Alexandra / Katzke, Verena A / Trichopoulou, Antonia / Yiannakouris, Nikos / Trichopoulos, Dimitrios / Boeing, Heiner / Quirós, J Ramón / Duell, Eric J / Molina-Montes, Esther / Huerta, José María / Ardanaz, Eva / Dorronsoro, Miren / Khaw, Kay-Tee / Wareham, Nicholas / Travis, Ruth C / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Vineis, Paolo / Riboli, Elio / Siddiq, Afshan / Bueno-de-Mesquita, H B / Peeters, Petra H / Nilsson, Peter M / Sund, Malin / Ye, Weimin / Lund, Eiliv / Jareid, Mie / Weiderpass, Elisabete / Duarte-Salles, Talita / Kong, So Yeon / Stepien, Magdalena / Canzian, Federico / Kaaks, Rudolf. ·Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts. · Institut National de la Santé et de la Recherche Médicale (INSERM), Centre for research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones, and Women's Health team, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. IGR, Villejuif, France. · Human Genetics Foundation (HuGeF), Torino, Italy. · Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany. · Hellenic Health Foundation, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. · Hellenic Health Foundation, Athens, Greece. Harokopio University of Athens, Greece. · Hellenic Health Foundation, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition, Environment, and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria de Granada (Granada.ibs), Granada, Spain. CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Navarre Public Health Institute, Pamplona, Spain. · Public Health Direction and Biodonostia-Ciberesp Basque Regional Health Department, San Sebastian, Spain. · University of Cambridge, School of Clinical Medicine, Cambridge, United Kingdom. · Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute, ISPO, Florence, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Dipartimento Di Medicina Clinica e Chirurgia Federico II University, Naples, Italy. · Division of Epidemiology, Public Health and Primary Care, Imperial College, London, United Kingdom. · Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom. · National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. The School of Public Health, Imperial College London, London, United Kingdom. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands. · Lund University, Department of Clinical Sciences, Skåne University Hospital, Malmö Sweden. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. The Medical Biobank at Umeå University, Umeå, Sweden. · Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway. · Department of Community Medicine, Faculty of Health Sciences, University of Tromso, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Samfundet Folkhälsan, Helsinki, Finland. · International Agency for Research on Cancer (IARC-WHO), Lyon, France. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. r.kaaks@dkfz.de. ·Cancer Epidemiol Biomarkers Prev · Pubmed #25103821.

ABSTRACT: BACKGROUND: Several studies have examined leukocyte telomere length (LTL) as a possible predictor for cancer at various organ sites. The hypothesis originally motivating many of these studies was that shorter telomeres would be associated with an increase in cancer risk; the results of epidemiologic studies have been inconsistent, however, and suggested positive, negative, or null associations. Two studies have addressed the association of LTL in relation to pancreatic cancer risk and the results are contrasting. METHODS: We measured LTL in a prospective study of 331 pancreatic cancer cases and 331 controls in the context of the European Prospective Investigation into Cancer and Nutrition (EPIC). RESULTS: We observed that the mean LTL was higher in cases (0.59 ± 0.20) than in controls (0.57 ± 0.17), although this difference was not statistically significant (P = 0.07), and a basic logistic regression model showed no association of LTL with pancreas cancer risk. When adjusting for levels of HbA1c and C-peptide, however, there was a weakly positive association between longer LTL and pancreatic cancer risk [OR, 1.13; 95% confidence interval (CI), 1.01-1.27]. Additional analyses by cubic spline regression suggested a possible nonlinear relationship between LTL and pancreatic cancer risk (P = 0.022), with a statistically nonsignificant increase in risk at very low LTL, as well as a significant increase at high LTL. CONCLUSION: Taken together, the results from our study do not support LTL as a uniform and strong predictor of pancreatic cancer. IMPACT: The results of this article can provide insights into telomere dynamics and highlight the complex relationship between LTL and pancreatic cancer risk.

10 Article Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. 2013

Michaud, Dominique S / Izard, Jacques / Wilhelm-Benartzi, Charlotte S / You, Doo-Ho / Grote, Verena A / Tjønneland, Anne / Dahm, Christina C / Overvad, Kim / Jenab, Mazda / Fedirko, Veronika / Boutron-Ruault, Marie Christine / Clavel-Chapelon, Françoise / Racine, Antoine / Kaaks, Rudolf / Boeing, Heiner / Foerster, Jana / Trichopoulou, Antonia / Lagiou, Pagona / Trichopoulos, Dimitrios / Sacerdote, Carlotta / Sieri, Sabina / Palli, Domenico / Tumino, Rosario / Panico, Salvatore / Siersema, Peter D / Peeters, Petra H M / Lund, Eiliv / Barricarte, Aurelio / Huerta, José-María / Molina-Montes, Esther / Dorronsoro, Miren / Quirós, J Ramón / Duell, Eric J / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Khaw, Kay-Tee / Wareham, Nick / Travis, Ruth C / Vineis, Paolo / Bueno-de-Mesquita, H Bas / Riboli, Elio. ·Department of Epidemiology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA. ·Gut · Pubmed #22990306.

ABSTRACT: OBJECTIVE: Examine the relationship between antibodies to 25 oral bacteria and pancreatic cancer risk in a prospective cohort study. DESIGN: We measured antibodies to oral bacteria in prediagnosis blood samples from 405 pancreatic cancer cases and 416 matched controls, nested within the European Prospective Investigation into Cancer and Nutrition study. Analyses were conducted using conditional logistic regression and additionally adjusted for smoking status and body mass index. RESULTS: Individuals with high levels of antibodies against Porphyromonas gingivalis ATTC 53978, a pathogenic periodontal bacteria, had a twofold higher risk of pancreatic cancer than individuals with lower levels of these antibodies (OR 2.14; 95% CI 1.05 to 4.36; >200 ng/ml vs ≤200 ng/ml). To explore the association with commensal (non-pathogenic) oral bacteria, we performed a cluster analysis and identified two groups of individuals, based on their antibody profiles. A cluster with overall higher levels of antibodies had a 45% lower risk of pancreatic cancer than a cluster with overall lower levels of antibodies (OR 0.55; 95% CI 0.36 to 0.83). CONCLUSIONS: Periodontal disease might increase the risk for pancreatic cancer. Moreover, increased levels of antibodies against specific commensal oral bacteria, which can inhibit growth of pathogenic bacteria, might reduce the risk of pancreatic cancer. Studies are needed to determine whether oral bacteria have direct effects on pancreatic cancer pathogenesis or serve as markers of the immune response.

11 Article Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2012

Molina-Montes, Esther / Wark, Petra A / Sánchez, María-José / Norat, Teresa / Jakszyn, Paula / Luján-Barroso, Leila / Michaud, Dominique S / Crowe, Francesca / Allen, Naomi / Khaw, Kay-Tee / Wareham, Nicholas / Trichopoulou, Antonia / Adarakis, George / Katarachia, Helen / Skeie, Guri / Henningsen, Maria / Broderstad, Ann Ragnhild / Berrino, Franco / Tumino, Rosario / Palli, Domenico / Mattiello, Amalia / Vineis, Paolo / Amiano, Pilar / Barricarte, Aurelio / Huerta, José-María / Duell, Eric J / Quirós, José-Ramón / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Overvad, Kim / Tjønneland, Anne / Roswall, Nina / Li, Kuanrong / Grote, Verena A / Steffen, Annika / Boeing, Heiner / Racine, Antoine / Boutron-Ruault, Marie-Christine / Carbonnel, Franck / Peeters, Petra H M / Siersema, Peter D / Fedirko, Veronika / Jenab, Mazda / Riboli, Elio / Bueno-de-Mesquita, Bas. ·Andalusian School of Public Health. Granada Cancer Registry, Spain. ·Int J Cancer · Pubmed #22438075.

ABSTRACT: Several studies support a protective effect of dietary magnesium against type 2 diabetes, but a harmful effect for iron. As diabetes has been linked to pancreatic cancer, intake of these nutrients may be also associated with this cancer. We examined the association between dietary intake of magnesium, total iron and heme-iron and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. In total, 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After an average follow-up of 11.3 years, 396 men and 469 women developed exocrine pancreatic cancer. Hazard ratios and 95% confidence intervals (CIs) were obtained using Cox regression stratified by age and center, and adjusted for energy intake, smoking status, height, weight, and self-reported diabetes status. Neither intake of magnesium, total iron nor heme-iron was associated with pancreatic cancer risk. In stratified analyses, a borderline inverse association was observed among overweight men (body mass index, ≥ 25 kg/m(2) ) with magnesium (HR(per 100 mg/day increase) = 0.79, 95% CI = 0.63-1.01) although this was less apparent using calibrated intake. In female smokers, a higher intake of heme-iron was associated with a higher pancreatic cancer risk (HR (per 1 mg/day increase) = 1.38, 95% CI = 1.10-1.74). After calibration, this risk increased significantly to 2.5-fold (95% CI = 1.22-5.28). Overall, dietary magnesium, total iron and heme-iron were not associated with pancreatic cancer risk during the follow-up period. Our observation that heme-iron was associated with increased pancreatic cancer risk in female smokers warrants replication in additional study populations.