Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Chandra Sekhar Pedamallu
Based on 2 articles published since 2010
(Why 2 articles?)
||||

Between 2010 and 2020, Chandra Sekhar Pedamallu wrote the following 2 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. 2017

Farshidfar, Farshad / Zheng, Siyuan / Gingras, Marie-Claude / Newton, Yulia / Shih, Juliann / Robertson, A Gordon / Hinoue, Toshinori / Hoadley, Katherine A / Gibb, Ewan A / Roszik, Jason / Covington, Kyle R / Wu, Chia-Chin / Shinbrot, Eve / Stransky, Nicolas / Hegde, Apurva / Yang, Ju Dong / Reznik, Ed / Sadeghi, Sara / Pedamallu, Chandra Sekhar / Ojesina, Akinyemi I / Hess, Julian M / Auman, J Todd / Rhie, Suhn K / Bowlby, Reanne / Borad, Mitesh J / Anonymous5350899 / Zhu, Andrew X / Stuart, Josh M / Sander, Chris / Akbani, Rehan / Cherniack, Andrew D / Deshpande, Vikram / Mounajjed, Taofic / Foo, Wai Chin / Torbenson, Michael S / Kleiner, David E / Laird, Peter W / Wheeler, David A / McRee, Autumn J / Bathe, Oliver F / Andersen, Jesper B / Bardeesy, Nabeel / Roberts, Lewis R / Kwong, Lawrence N. ·Departments of Surgery and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada. · Departments of Genomic Medicine, Melanoma Medical Oncology, Bioinformatics and Computational Biology, Pathology, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. · Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. · University of California Santa Cruz, Santa Cruz, CA 95064, USA. · The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. · Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada. · Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA. · Departments of Genetics and Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. · Blueprint Medicines, 38 Sidney Street, Cambridge, MA 02139, USA. · Divisions of Gastroenterology and Hepatology and Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA. · Memorial Sloan Kettering Cancer Center, New York, NY 10005, USA. · University of Alabama at Birmingham, Birmingham, AL 35294, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA. · The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. · Departments of Genetics and Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. · USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA. · Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ 85054, USA. · Departments of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. · Departments of Pathology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. · National Cancer Institute, Bethesda, MD 20892, USA. · Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. · Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark. Electronic address: jesper.andersen@bric.ku.dk. · Departments of Pathology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address: bardeesy.nabeel@mgh.harvard.edu. · Divisions of Gastroenterology and Hepatology and Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA. Electronic address: roberts.lewis@mayo.edu. · Departments of Genomic Medicine, Melanoma Medical Oncology, Bioinformatics and Computational Biology, Pathology, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address: lkwong@mdanderson.org. ·Cell Rep · Pubmed #28297679.

ABSTRACT: Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

2 Article Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets. 2016

Lin, Wenchu / Francis, Joshua M / Li, Hong / Gao, Xiaoping / Pedamallu, Chandra Sekhar / Ernst, Patricia / Meyerson, Matthew. ·a High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei , Anhui , P.R. China. · b Department of Medical Oncology & Center for Cancer Genome Discovery , Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA. · c Cancer Program, Broad Institute of Harvard and MIT , Cambridge , MA , USA. · d Department of Pediatrics , The University of Colorado Anschutz Medical Campus , Aurora , USA. ·Cancer Biol Ther · Pubmed #27801610.

ABSTRACT: The reported incidence of pancreatic neuroendocrine tumors (PanNETs) has increased, due in large part to improvements in detection and awareness. However, therapeutic options are limited and a critical need exists for understanding a more thorough characterization of the molecular pathology underlying this disease. The Men1 knockout mouse model recapitulates the early stage of human PanNET development and can serve as a foundation for the development of advanced mouse models that are necessary for preclinical testing. Menin, the product of the MEN1 gene, has been shown to physically interact with the KMT2A and KMT2B histone methyltransferases. Both the KMT2A and MEN1 genes are located on chromosome 11q, which frequently undergoes loss of heterozygosity (LOH) in PanNETs. We report herein that inactivation of Kmt2a in Men1-deficient mice accelerated pancreatic islet tumorigenesis and shortened the average life span. Increases in cell proliferation were observed in mouse pancreatic islet tumors upon inactivation of both Kmt2a and Men1. The Kmt2a/Men1 double knockout mouse model can be used as a mouse model to study advanced PanNETs.