Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by David Muller
Based on 4 articles published since 2010
(Why 4 articles?)
||||

Between 2010 and 2020, D. Müller wrote the following 4 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article CA19-9 and apolipoprotein-A2 isoforms as detection markers for pancreatic cancer: a prospective evaluation. 2019

Honda, Kazufumi / Katzke, Verena A / Hüsing, Anika / Okaya, Shinobu / Shoji, Hirokazu / Onidani, Kaoru / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Weiderpass, Elisabete / Vineis, Paolo / Muller, David / Tsilidis, Kostas / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Aleksandrova, Krasimira / Boeing, Heiner / Bueno-de-Mesquita, H Bas / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Khaw, Kay-Tee / Wareham, Nick / Travis, Ruth C / Merino, Susana / Duell, Eric J / Rodríguez-Barranco, Miguel / Chirlaque, María Dolores / Barricarte, Aurelio / Rebours, Vinciane / Boutron-Ruault, Marie-Chiristine / Romana Mancini, Francesca / Brennan, Paul / Scelo, Ghislaine / Manjer, Jonas / Sund, Malin / Öhlund, Daniel / Canzian, Federico / Kaaks, Rudolf. ·Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan. · Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan. · Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy. · Department of Molecular and Genetic Epidemiology, IIGM - Italian Institute for Genomic Medicine, Torino, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany. · Department of Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, School of Medicine, WHO Collaborating Center for Nutrition and Health. · Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. · Cancer Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Public Health Directorate, Asturias, Spain, Acknowledgment of funds: Regional Government of Asturias. · PanC4 Consortium, Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. · Department of Epidemiology, Murcia Regional Health Council, CIBER Epidemiología y Salud Pública (CIBERESP), Spain, Ronda de Levante, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM - UMR 1149, University Paris 7, Paris, France. · CESP, INSERM U1018, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif, France. · Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Gustave Roussy, Villejuif, France. · Section of Genetics, International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France. · Department of Surgery, Skåne University Hospital, Lund University, Lund, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Radiation Sciences and Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden. · Genomic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ·Int J Cancer · Pubmed #30259989.

ABSTRACT: Recently, we identified unique processing patterns of apolipoprotein A2 (ApoA2) in patients with pancreatic cancer. Our study provides a first prospective evaluation of an ApoA2 isoform ("ApoA2-ATQ/AT"), alone and in combination with carbohydrate antigen 19-9 (CA19-9), as an early detection biomarker for pancreatic cancer. We performed ELISA measurements of CA19-9 and ApoA2-ATQ/AT in 156 patients with pancreatic cancer and 217 matched controls within the European EPIC cohort, using plasma samples collected up to 60 months prior to diagnosis. The detection discrimination statistics were calculated for risk scores by strata of lag-time. For CA19-9, in univariate marker analyses, C-statistics to distinguish future pancreatic cancer patients from cancer-free individuals were 0.80 for plasma taken ≤6 months before diagnosis, and 0.71 for >6-18 months; for ApoA2-ATQ/AT, C-statistics were 0.62, and 0.65, respectively. Joint models based on ApoA2-ATQ/AT plus CA19-9 significantly improved discrimination within >6-18 months (C = 0.74 vs. 0.71 for CA19-9 alone, p = 0.022) and ≤ 18 months (C = 0.75 vs. 0.74, p = 0.022). At 98% specificity, and for lag times of ≤6, >6-18 or ≤ 18 months, sensitivities were 57%, 36% and 43% for CA19-9 combined with ApoA2-ATQ/AT, respectively, vs. 50%, 29% and 36% for CA19-9 alone. Compared to CA19-9 alone, the combination of CA19-9 and ApoA2-ATQ/AT may improve detection of pancreatic cancer up to 18 months prior to diagnosis under usual care, and may provide a useful first measure for pancreatic cancer detection prior to imaging.

2 Article Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. 2017

Duell, Eric J / Lujan-Barroso, Leila / Sala, Núria / Deitz McElyea, Samantha / Overvad, Kim / Tjonneland, Anne / Olsen, Anja / Weiderpass, Elisabete / Busund, Lill-Tove / Moi, Line / Muller, David / Vineis, Paolo / Aune, Dagfinn / Matullo, Giuseppe / Naccarati, Alessio / Panico, Salvatore / Tagliabue, Giovanna / Tumino, Rosario / Palli, Domenico / Kaaks, Rudolf / Katzke, Verena A / Boeing, Heiner / Bueno-de-Mesquita, H B As / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Kotanidou, Anastasia / Travis, Ruth C / Wareham, Nick / Khaw, Kay-Tee / Ramon Quiros, Jose / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, María-Dolores / Ardanaz, Eva / Severi, Gianluca / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Brennan, Paul / Gunter, Marc / Scelo, Ghislaine / Cote, Greg / Sherman, Stuart / Korc, Murray. ·Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway. · Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. · School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom. · Human Genetics Foundation (HuGeF), Turin, Italy. · Department of Medical Sciences, University of Turin, Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P, Arezzo" Hospital, ASP, Ragusa, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany. · Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece. · Department of Epidemiology, Harvard School of Public Health, Boston, MA. · Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Public Health Directorate, Asturias, Spain. · Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada. · CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Basque Regional Health Department, San Sebatian, Spain. · Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, France. · Beaujon Hospital, Pancreatology Unit, Clichy, France. · INSERM, University Paris, France. · International Agency for Research on Cancer (IARC), Lyon, France. · Medical University of South Carolina, Charleston, SC. · Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN. · Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN. ·Int J Cancer · Pubmed #28542740.

ABSTRACT: Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).

3 Article Pancreatic tumours escape from translational control through 4E-BP1 loss. 2014

Martineau, Y / Azar, R / Müller, D / Lasfargues, C / El Khawand, S / Anesia, R / Pelletier, J / Bousquet, C / Pyronnet, S. ·Université de Toulouse, Centre de Recherche en Cancérologie de Toulouse (CRCT), Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer, INSERM UMR-1037, Toulouse, France. · 1] Université de Toulouse, Centre de Recherche en Cancérologie de Toulouse (CRCT), Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer, INSERM UMR-1037, Toulouse, France [2] Department of Clinical Pharmacy, Faculty of Pharmacy, Lebanese University, Hadath, Lebanon. · Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. · 1] Université de Toulouse, Centre de Recherche en Cancérologie de Toulouse (CRCT), Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer, INSERM UMR-1037, Toulouse, France [2] Pôle digestif, Centre Hospitalier Universitaire de Rangueil, Toulouse, France. ·Oncogene · Pubmed #23563181.

ABSTRACT: The mRNA cap-binding protein eIF4E (eukaryotic translation initiation factor 4E) permits ribosome recruitment to capped mRNAs, and its phosphorylated form has an important role in cell transformation. The oncogenic function of eIF4E is, however, antagonised by the hypophosphorylated forms of the inhibitory eIF4E-binding proteins 1 and 2. eIF4E-binding protein 1 and 2 (4E-BP1 and 2) are two major targets of the protein kinase mTOR, and are essential for the antiproliferative effects of mTOR inhibitors. Herein, we report that pancreas expresses specifically and massively 4E-BP1 (4E-BP2 is nearly undetectable). However, 4E-BP1 expression is extinguished in more than half of the human pancreatic ductal adenocarcinomas (PDAC). 4E-BP1 shutoff is recapitulated in a mouse genetic model of PDAC, which is based on a pancreas-specific mutation of Kras, the more frequently mutated oncogene in human pancreatic tumours. 4E-BP1 downregulation enhances eIF4E phosphorylation and facilitates pancreatic cancer cell proliferation in vitro and tumour development in vivo. Furthermore, 4E-BP1 loss combined with the absence of 4E-BP2 renders eIF4E phosphorylation, protein synthesis and cell proliferation resistant to mTOR inhibition. However, proliferation can be better limited by a recently developed compound that mimics the function of 4E-BP1 and 2 independently of mTOR inhibition.

4 Article A piece of my mind. Haiti. 2011

Muller, David. ·david.muller@mssm.edu ·JAMA · Pubmed #21285416.

ABSTRACT: -- No abstract --