Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Luis Muñoz-Bellvis
Based on 9 articles published since 2009
(Why 9 articles?)
||||

Between 2009 and 2019, L. Muñoz-Bellvís wrote the following 9 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Reduced risk of pancreatic cancer associated with asthma and nasal allergies. 2017

Gomez-Rubio, Paulina / Zock, Jan-Paul / Rava, Marta / Marquez, Mirari / Sharp, Linda / Hidalgo, Manuel / Carrato, Alfredo / Ilzarbe, Lucas / Michalski, Christoph / Molero, Xavier / Farré, Antoni / Perea, José / Greenhalf, William / O'Rorke, Michael / Tardón, Adonina / Gress, Thomas / Barberà, Victor / Crnogorac-Jurcevic, Tatjana / Domínguez-Muñoz, Enrique / Muñoz-Bellvís, Luís / Alvarez-Urturi, Cristina / Balcells, Joaquim / Barneo, Luis / Costello, Eithne / Guillén-Ponce, Carmen / Kleeff, Jörg / Kong, Bo / Lawlor, Rita / Löhr, Matthias / Mora, Josefina / Murray, Lim / O'Driscoll, Damian / Peláez, Pablo / Poves, Ignasi / Scarpa, Aldo / Real, Francisco X / Malats, Núria / Anonymous6460850. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. · Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain. · National Cancer Registry Ireland, Cork, Ireland, and Institute of Health & Society, Newcastle University, UK. · Hospital Madrid-Norte-Sanchinarro, Madrid, Spain. · Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain. · Hospital del Mar-Parc de Salut Mar, Barcelona, Spain. · Technical University of Munich, Munich, Germany. · Exocrine Pancreas Research Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain. · Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. · Department of Surgery, 12 de Octubre University Hospital, Madrid, Spain. · The Royal Liverpool University Hospital, Liverpool, UK. · Centre for Public Health, Queen's University Belfast, Belfast, UK. · Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital Giessen and Marburg, Marburg, Germany. · Laboratorio de Genética Molecular, Hospital General Universitario de Elche, Elche, Spain. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK. · Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. · Cirugía General y del Aparato Digestivo, Hospital Universitario de Salamanca, Salamanca, Spain. · Department of Pathology and Diagnostics, University of Verona, Verona, Italy. · Gastrocentrum, Karolinska Institutet, Stockholm, Sweden. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ·Gut · Pubmed #26628509.

ABSTRACT: OBJECTIVE: Studies indicate an inverse association between ductal adenocarcinoma of the pancreas (PDAC) and nasal allergies. However, controversial findings are reported for the association with asthma. Understanding PDAC risk factors will help us to implement appropriate strategies to prevent, treat and diagnose this cancer. This study assessed and characterised the association between PDAC and asthma and corroborated existing reports regarding the association between allergies and PDAC risk. DESIGN: Information about asthma and allergies was collated from 1297 PDAC cases and 1024 controls included in the PanGenEU case-control study. Associations between PDAC and atopic diseases were studied using multilevel logistic regression analysis. Meta-analyses of association studies on these diseases and PDAC risk were performed applying random-effects model. RESULTS: Asthma was associated with lower risk of PDAC (OR 0.64, 95% CI 0.47 to 0.88), particularly long-standing asthma (>=17 years, OR 0.39, 95% CI 0.24 to 0.65). Meta-analysis of 10 case-control studies sustained our results (metaOR 0.73, 95% CI 0.59 to 0.89). Nasal allergies and related symptoms were associated with lower risk of PDAC (OR 0.66, 95% CI 0.52 to 0.83 and OR 0.59, 95% CI 0.46 to 0.77, respectively). These results were supported by a meta-analysis of nasal allergy studies (metaOR 0.6, 95% CI 0.5 to 0.72). Skin allergies were not associated with PDAC risk. CONCLUSIONS: This study shows a consistent inverse association between PDAC and asthma and nasal allergies, supporting the notion that atopic diseases are associated with reduced cancer risk. These results point to the involvement of immune and/or inflammatory factors that may either foster or restrain pancreas carcinogenesis warranting further research to understand the molecular mechanisms driving this association.

2 Article Pancreatic cancer and autoimmune diseases: An association sustained by computational and epidemiological case-control approaches. 2019

Gomez-Rubio, Paulina / Piñero, Janet / Molina-Montes, Esther / Gutiérrez-Sacristán, Alba / Marquez, Mirari / Rava, Marta / Michalski, Christoph W / Farré, Antoni / Molero, Xavier / Löhr, Matthias / Perea, José / Greenhalf, William / O'Rorke, Michael / Tardón, Adonina / Gress, Thomas / Barberá, Victor M / Crnogorac-Jurcevic, Tatjana / Muñoz-Bellvís, Luís / Domínguez-Muñoz, Enrique / Balsells, Joaquim / Costello, Eithne / Yu, Jingru / Iglesias, Mar / Ilzarbe, Lucas / Kleeff, Jörg / Kong, Bo / Mora, Josefina / Murray, Liam / O'Driscoll, Damian / Poves, Ignasi / Lawlor, Rita T / Ye, Weimin / Hidalgo, Manuel / Scarpa, Aldo / Sharp, Linda / Carrato, Alfredo / Real, Francisco X / Furlong, Laura I / Malats, Núria / Anonymous2321201. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center CNIO, Madrid, Spain. · Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Enfermedades Hepáticas y Digestivas (CIBERHD), and Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain. · Research Program on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universidad Pompeu Fabra (UPF), Barcelona, Spain. · Department of Surgery, Technical University of Munich, Munich, Germany. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. · Hospital Universitaru Vall d'Hebron, Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Barcelona, Spain. · Universitat Auntònoma de Barcelona, Campus de la UAB, Barcelona, Spain. · Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and University Hospital, Stockholm, Sweden. · Department of Surgery, University Hospital 12 de Octubre, Madrid, Spain. · Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool, United Kingdom. · Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom. · Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany. · Laboratorio de Genética Molecular, Hospital General Universitario de Elche, Elche, Spain. · Centre for Molecular Oncology, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. · General and Digestive Surgery Department, Hospital Universitario de Salamanca, Salamanca, Spain. · Department of Gastroenterology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. · Department of Gastroenterology, Hospital del Mar/Parc de Salut Mar, Barcelona, Spain. · Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany. · Cancer Data Registrars, National Cancer Registry Ireland, Cork, Ireland. · ARC-Net Centre for Applied Research on Cancer, Department of Pathology and Diagnostics, University Hospital Trust of Verona, Verona, Italy. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet and University Hospital, Sweden. · Hospital Madrid-Norte-Sanchinarro and Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA. · Institute of Health and Society, Newcastle University, Newcastle upon Tyne, United Kingdom. · Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. · PanGenEU Study Investigators (Additional file 1: Annex S1). ·Int J Cancer · Pubmed #30229903.

ABSTRACT: Deciphering the underlying genetic basis behind pancreatic cancer (PC) and its associated multimorbidities will enhance our knowledge toward PC control. The study investigated the common genetic background of PC and different morbidities through a computational approach and further evaluated the less explored association between PC and autoimmune diseases (AIDs) through an epidemiological analysis. Gene-disease associations (GDAs) of 26 morbidities of interest and PC were obtained using the DisGeNET public discovery platform. The association between AIDs and PC pointed by the computational analysis was confirmed through multivariable logistic regression models in the PanGen European case-control study population of 1,705 PC cases and 1,084 controls. Fifteen morbidities shared at least one gene with PC in the DisGeNET database. Based on common genes, several AIDs were genetically associated with PC pointing to a potential link between them. An epidemiologic analysis confirmed that having any of the nine AIDs studied was significantly associated with a reduced risk of PC (Odds Ratio (OR) = 0.74, 95% confidence interval (CI) 0.58-0.93) which decreased in subjects having ≥2 AIDs (OR = 0.39, 95%CI 0.21-0.73). In independent analyses, polymyalgia rheumatica, and rheumatoid arthritis were significantly associated with low PC risk (OR = 0.40, 95%CI 0.19-0.89, and OR = 0.73, 95%CI 0.53-1.00, respectively). Several inflammatory-related morbidities shared a common genetic component with PC based on public databases. These molecular links could shed light into the molecular mechanisms underlying PC development and simultaneously generate novel hypotheses. In our study, we report sound findings pointing to an association between AIDs and a reduced risk of PC.

3 Article Risk of pancreatic cancer associated with family history of cancer and other medical conditions by accounting for smoking among relatives. 2018

Molina-Montes, E / Gomez-Rubio, P / Márquez, M / Rava, M / Löhr, M / Michalski, C W / Molero, X / Farré, A / Perea, J / Greenhalf, W / Ilzarbe, L / O'Rorke, M / Tardón, A / Gress, T / Barberà, V M / Crnogorac-Jurcevic, T / Domínguez-Muñoz, E / Muñoz-Bellvís, L / Balsells, J / Costello, E / Huang, J / Iglesias, M / Kleeff, J / Kong, Bo / Mora, J / Murray, L / O'Driscoll, D / Poves, I / Scarpa, A / Ye, W / Hidalgo, M / Sharp, L / Carrato, A / Real, F X / Malats, N / Anonymous601079. ·Spanish National Cancer Research Center (CNIO), Genetic and Molecular Epidemiology Group, Madrid, and CIBERONC, Spain. · Karolinska Institutet and University Hospital, Gastrocentrum, Stockholm, Sweden. · Technical University of Munich, Department of Surgery, Munich, Germany. · University of Heidelberg, Department of Surgery, Heidelberg, Germany. · Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, and CIBEREHD, Spain. · Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology, Barcelona, Spain. · University Hospital 12 de Octubre, Department of Surgery, Madrid, Spain. · Royal Liverpool University Hospital, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK. · Hospital del Mar-Parc de Salut Mar, Barcelona, Spain. · Queen's University Belfast, Centre for Public Health, Belfast, UK. · Instituto Universitario de Oncología del Principado de Asturias, Department of Medicine, Oviedo, and CIBERESP, Spain. · University Hospital of Giessen and Marburg, Department of Gastroenterology, Marburg, Germany. · General University Hospital of Elche, Molecular Genetics Laboratory, Elche, Spain. · Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, London, UK. · University Clinical Hospital of Santiago de Compostela, Department of Gastroenterology, Santiago de Compostela, Spain. · Salamanca University Hospital, General and Digestive Surgery Department, Salamanca, Spain. · Martin-Luther-University Halle-Wittenberg, Department of Visceral, Vascular and Endocrine Surgery, Halle (Saale), Germany. · National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland. · ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. · Madrid-Norte-Sanchinarro Hospital, Madrid, Spain. · Newcastle University, Institute of Health and Society, Newcastle upon Tyne, UK. · Ramón y Cajal University Hospital, Department of Oncology, IRYCIS, Alcala University, Madrid, and CIBERONC, Spain. · Spanish National Cancer Research Centre (CNIO), Epithelial Carcinogenesis Group, Madrid, Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, and CIBERONC, Spain. ·Int J Epidemiol · Pubmed #29329392.

ABSTRACT: Background: Family history (FH) of pancreatic cancer (PC) has been associated with an increased risk of PC, but little is known regarding the role of inherited/environmental factors or that of FH of other comorbidities in PC risk. We aimed to address these issues using multiple methodological approaches. Methods: Case-control study including 1431 PC cases and 1090 controls and a reconstructed-cohort study (N = 16 747) made up of their first-degree relatives (FDR). Logistic regression was used to evaluate PC risk associated with FH of cancer, diabetes, allergies, asthma, cystic fibrosis and chronic pancreatitis by relative type and number of affected relatives, by smoking status and other potential effect modifiers, and by tumour stage and location. Familial aggregation of cancer was assessed within the cohort using Cox proportional hazard regression. Results: FH of PC was associated with an increased PC risk [odds ratio (OR) = 2.68; 95% confidence interval (CI): 2.27-4.06] when compared with cancer-free FH, the risk being greater when ≥ 2 FDRs suffered PC (OR = 3.88; 95% CI: 2.96-9.73) and among current smokers (OR = 3.16; 95% CI: 2.56-5.78, interaction FHPC*smoking P-value = 0.04). PC cumulative risk by age 75 was 2.2% among FDRs of cases and 0.7% in those of controls [hazard ratio (HR) = 2.42; 95% CI: 2.16-2.71]. PC risk was significantly associated with FH of cancer (OR = 1.30; 95% CI: 1.13-1.54) and diabetes (OR = 1.24; 95% CI: 1.01-1.52), but not with FH of other diseases. Conclusions: The concordant findings using both approaches strengthen the notion that FH of cancer, PC or diabetes confers a higher PC risk. Smoking notably increases PC risk associated with FH of PC. Further evaluation of these associations should be undertaken to guide PC prevention strategies.

4 Article Histologic Tumor Grade and Preoperative Bilary Drainage are the Unique Independent Prognostic Factors of Survival in Pancreatic Ductal Adenocarcinoma Patients After Pancreaticoduodenectomy. 2018

Macías, Nicolás / Sayagués, José M / Esteban, Carmen / Iglesias, Manuel / González, Luís M / Quiñones-Sampedro, Jose / Gutiérrez, María L / Corchete, Luís A / Abad, Maria M / Bengoechea, Oscar / Muñoz-Bellvis, Luís. ·Service of General and Gastrointestinal Surgery and IBSAL. · Department of Medicine, Cytometry Service-Nucleus, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL, University of Salamanca, Salamanca, Spain. · Cáncer Research Center and Service of Hematology. · Department of Pathology and IBSAL, University Hospital of Salamanca. ·J Clin Gastroenterol · Pubmed #28059940.

ABSTRACT: BACKGROUND AND AIM: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer; most patients die during the first 6 months after diagnosis. With a 5% 5-year survival rate, is the fourth leading cause of cancer death in developed countries. In this regard, several clinical, histopathologic and biological characteristics of the disease favoring long-term survival after pancreaticoduodenectomy have been reported to be significant prognostic factors. Despite the availability of this information, there is no consensus about the different prognostic factors reported in the literature, probably due to variations in patient selection, methods, and sample size studied. The aim of this study was to identify the clinical and pathologic features associated to prognosis of the disease after pancreaticoduodenectomy. MATERIALS AND METHODS: The clinical and pathologic data from 78 patients who underwent a potentially curative resection for PDAC at our institution between 2003 and 2014 were analyzed retrospectively. RESULTS: Overall, high-grade PDAC cases showed larger tumor size (P=0.009) and a higher frequency of deaths in association with a nonsignificantly shortened patient overall survival (median of 12.5 vs. 21.7 mo; P=0.065) as compared with low-grade PDAC patients. High histologic grade (P=0.013), preoperative drainage on the main bile duct (P=0.014) and absence of adjuvant therapy (P=0.035) were associated with a significantly poorer outcome. Overall survival multivariate analysis showed histologic grade (P=0.019) and bile duct preoperative drainage (P=0.016) as the sole independent variables predicting an adverse outcome. CONCLUSIONS: Our results indicate that histologic tumor grade and preoperative biliary drainage are the only significant independent prognostic factors in PDAC patients after pancreatectomy.

5 Article A systems approach identifies time-dependent associations of multimorbidities with pancreatic cancer risk. 2017

Gomez-Rubio, P / Rosato, V / Márquez, M / Bosetti, C / Molina-Montes, E / Rava, M / Piñero, J / Michalski, C W / Farré, A / Molero, X / Löhr, M / Ilzarbe, L / Perea, J / Greenhalf, W / O'Rorke, M / Tardón, A / Gress, T / Barberá, V M / Crnogorac-Jurcevic, T / Muñoz-Bellvís, L / Domínguez-Muñoz, E / Gutiérrez-Sacristán, A / Balsells, J / Costello, E / Guillén-Ponce, C / Huang, J / Iglesias, M / Kleeff, J / Kong, B / Mora, J / Murray, L / O'Driscoll, D / Peláez, P / Poves, I / Lawlor, R T / Carrato, A / Hidalgo, M / Scarpa, A / Sharp, L / Furlong, L I / Real, F X / La Vecchia, C / Malats, N / Anonymous4870902. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain. · Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro," Department of Clinical Sciences and Community Health, University of Milan, Milan. · Unit of Medical Statistics, Biometry and Bioinformatics, National Cancer Institute, IRCCS Foundation, Milan. · Department of Epidemiology, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy. · Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Pompeu Fabra Univeristy (UPF), Barcelona, Spain. · Department of Surgery, Technical University of Munich, Munich. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Gastroenterology, Santa Creu i Sant Pau Hospital, Barcelona. · Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona. · Department of Medicine, Universitat Autònoma de Barcelona, Barcelona. · Network of Biomedical Research Centres (CIBER), Hepatic and Digestive Diseases and Epidemiology and Public Health, Madrid, Spain. · Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden. · Department of Gastroenterology, Parc de Salut Mar University Hospital, Barcelona. · Department of Surgery, 12 de Octubre University Hospital, Madrid, Spain. · Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool. · Centre for Public Health, Queen's University Belfast, Belfast, UK. · Department of Medicine, University Institute of Oncology of Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany. · Molecular Genetics Laboratory, General University Hospital of Elche, Elche, Spain. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK. · General and Digestive Surgery Department, Salamanca University Hospital, Salamanca. · Department of Gastroenterology, Clinical University Hospital of Santiago de Compostela, Santiago de Compostela. · Department of Oncology, Ramón y Cajal Hospital, Madrid, and CIBERONC, Spain. · Research Programme, National Cancer Registry Ireland. · ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital trust of Verona, Verona, Italy. · Clara Campal Integrated Oncological Centre, Sanchinarro Hospital, Madrid, Spain. · Institute of Health & Society, Newcastle University, UK. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, and CIBERONC. · Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain. ·Ann Oncol · Pubmed #28383714.

ABSTRACT: Background: Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed in late adulthood; therefore, many patients suffer or have suffered from other diseases. Identifying disease patterns associated with PDAC risk may enable a better characterization of high-risk patients. Methods: Multimorbidity patterns (MPs) were assessed from 17 self-reported conditions using hierarchical clustering, principal component, and factor analyses in 1705 PDAC cases and 1084 controls from a European population. Their association with PDAC was evaluated using adjusted logistic regression models. Time since diagnosis of morbidities to PDAC diagnosis/recruitment was stratified into recent (<3 years) and long term (≥3 years). The MPs and PDAC genetic networks were explored with DisGeNET bioinformatics-tool which focuses on gene-diseases associations available in curated databases. Results: Three MPs were observed: gastric (heartburn, acid regurgitation, Helicobacter pylori infection, and ulcer), metabolic syndrome (obesity, type-2 diabetes, hypercholesterolemia, and hypertension), and atopic (nasal allergies, skin allergies, and asthma). Strong associations with PDAC were observed for ≥2 recently diagnosed gastric conditions [odds ratio (OR), 6.13; 95% confidence interval CI 3.01-12.5)] and for ≥3 recently diagnosed metabolic syndrome conditions (OR, 1.61; 95% CI 1.11-2.35). Atopic conditions were negatively associated with PDAC (high adherence score OR for tertile III, 0.45; 95% CI, 0.36-0.55). Combining type-2 diabetes with gastric MP resulted in higher PDAC risk for recent (OR, 7.89; 95% CI 3.9-16.1) and long-term diagnosed conditions (OR, 1.86; 95% CI 1.29-2.67). A common genetic basis between MPs and PDAC was observed in the bioinformatics analysis. Conclusions: Specific multimorbidities aggregate and associate with PDAC in a time-dependent manner. A better characterization of a high-risk population for PDAC may help in the early diagnosis of this cancer. The common genetic basis between MP and PDAC points to a mechanistic link between these conditions.

6 Article Identification and characterization of the gene expression profiles for protein coding and non-coding RNAs of pancreatic ductal adenocarcinomas. 2015

Gutiérrez, María Laura / Corchete, Luis / Teodosio, Cristina / Sarasquete, María Eugenia / del Mar Abad, María / Iglesias, Manuel / Esteban, Carmen / Sayagues, José María / Orfao, Alberto / Muñoz-Bellvis, Luis. ·Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL) and IBSAL (University of Salamanca), Salamanca, Spain. · Cancer Research Center and Service of Hematology (University Hospital of Salamanca), Salamanca, Spain. · Department of Pathology (University Hospital of Salamanca), Salamanca, Spain. · Service of General and Gastrointestinal Surgery and IBSAL (University Hospital of Salamanca), Salamanca, Spain. ·Oncotarget · Pubmed #26053098.

ABSTRACT: Significant advances have been achieved in recent years in the identification of the genetic and the molecular alterations of pancreatic ductal adenocarcinoma (PDAC). Despite this, at present the understanding of the precise mechanisms involved in the development and malignant transformation of PDAC remain relatively limited. Here, we evaluated for the first time, the molecular heterogeneity of PDAC tumors, through simultaneous assessment of the gene expression profile (GEP) for both coding and non-coding genes of tumor samples from 27 consecutive PDAC patients. Overall, we identified a common GEP for all PDAC tumors, characterized by an increased expression of genes involved in PDAC cell proliferation, local invasion and metastatic capacity, together with a significant alteration of the early steps of the cellular immune response. At the same time, we confirm and extend on previous observations about the genetic complexity of PDAC tumors as revealed by the demonstration of two clearly distinct and unique GEPs (e.g. epithelial-like vs. mesenchymal-like) reflecting the alteration of different signaling pathways involved in the oncogenesis and progression of these tumors. Our results also highlight the potential role of the immune system microenvironment in these tumors, with potential diagnostic and therapeutic implications.

7 Article Altered interphase fluorescence in situ hybridization profiles of chromosomes 4, 8q24, and 9q34 in pancreatic ductal adenocarcinoma are associated with a poorer patient outcome. 2014

Gutiérrez, María L / Muñoz-Bellvis, Luis / Sarasquete, María E / Hernández-Mejía, David G / Abad, María del Mar / Bengoechea, Oscar / Corchete, Luis / González-González, María / García-García, Jacinto / Gonzalez, Marcos / Mota, Ines / Orfao, Alberto / Sayagues, José M. ·Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain. · Department of General and Digestive Surgery, University Hospital of Salamanca, Salamanca, Spain. · Hematology Service, Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Salamanca, Spain. · Department of Pathology, University Hospital of Salamanca, Salamanca, Spain. · Cytometry General Service-NUCLEUS, Department of Medicine and Cancer Center Research and Institute of Molecular Biology and Cellular Oncology, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain. Electronic address: orfao@usal.es. ·J Mol Diagn · Pubmed #25157969.

ABSTRACT: Most patients with pancreatic ductal adenocarcinoma (PDAC) die within 6 months of diagnosis. However, 20% to 25% patients undergoing total tumor resection remain alive and disease-free 5 years after diagnostic surgery. Few studies on tumor markers have predicted patient prognosis and/or survival. We evaluated the effect of tumor cytogenetic copy number changes detected by interphase fluorescence in situ hybridization on overall survival (OS) of 55 PDAC patients. The prognostic value of copy number changes showing an effect on OS was validated in an external cohort of 44 surgically resected PDAC patients by comparative genomic hybridization arrays, and the genes coded in altered chromosomes with prognostic value were identified by high-density single-nucleotide polymorphism arrays in 20 cases. Copy number changes of chromosomes 4 and 9q34 with gains of 8q24 were independently associated with shorter OS. On the basis of these three chromosomal alterations, a score is proposed that identifies patients with significantly different (P < 0.001) 5-year OS rates: 60% ± 20%, 16% ± 8%, and 0% ± 0%, respectively. Our results show an association between tumor cytogenetics and OS of PDAC patients and provide the basis for further prognostic stratification of patients undergoing complete tumor resection. Further studies to identify specific genes coded in these chromosomes and their functional consequences are necessary to understand the clinical effect of these changes.

8 Article Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology. 2011

Gutiérrez, María Laura / Muñoz-Bellvis, Luís / Abad, María del Mar / Bengoechea, Oscar / González-González, María / Orfao, Alberto / Sayagués, José María. ·Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain. ·PLoS One · Pubmed #21811587.

ABSTRACT: The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP)-arrays to define those chromosomal regions which most commonly harbour copy number (CN) alterations and loss of heterozygozity (LOH) in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70%) extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9) versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11). From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterozygozity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.

9 Minor Cytogenetic heterogeneity of pancreatic ductal adenocarcinomas: identification of intratumoral pathways of clonal evolution. 2011

Gutiérrez, María Laura / Sayagués, José María / Abad, María del Mar / Bengoechea, Oscar / González-González, María / Orfao, Alberto / Muñoz-Bellvis, Luís. · ·Histopathology · Pubmed #21323969.

ABSTRACT: -- No abstract --