Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Adrienne L. Morey
Based on 2 articles published since 2010
(Why 2 articles?)
||||

Between 2010 and 2020, Adrienne Morey wrote the following 2 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Clinical Trial Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. 2015

Chantrill, Lorraine A / Nagrial, Adnan M / Watson, Clare / Johns, Amber L / Martyn-Smith, Mona / Simpson, Skye / Mead, Scott / Jones, Marc D / Samra, Jaswinder S / Gill, Anthony J / Watson, Nicole / Chin, Venessa T / Humphris, Jeremy L / Chou, Angela / Brown, Belinda / Morey, Adrienne / Pajic, Marina / Grimmond, Sean M / Chang, David K / Thomas, David / Sebastian, Lucille / Sjoquist, Katrin / Yip, Sonia / Pavlakis, Nick / Asghari, Ray / Harvey, Sandra / Grimison, Peter / Simes, John / Biankin, Andrew V / Anonymous5550827 / Anonymous5560827. ·The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Macarthur Cancer Therapy Centre, Campbelltown, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. andrew.biankin@glasgow.ac.uk l.chantrill@garvan.org.au. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. Crown Princess Mary Cancer Centre, Westmead, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Prince of Wales Hospital, Randwick, New South Wales, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. · University of Sydney, New South Wales, Australia. Macquarie University Hospital, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. Department of Surgery, Bankstown Hospital, Sydney, New South Wales, Australia. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. · NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. · Northern Sydney Cancer Centre, Royal North Shore Hospital, New South Wales, Australia. · Bankstown Cancer Centre, Bankstown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. Department of Surgery, Bankstown Hospital, Sydney, New South Wales, Australia. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. andrew.biankin@glasgow.ac.uk l.chantrill@garvan.org.au. ·Clin Cancer Res · Pubmed #25896973.

ABSTRACT: PURPOSE: Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies. EXPERIMENTAL DESIGN: The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM). RESULTS: Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study. CONCLUSIONS: Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options.

2 Article Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. 2011

Scarlett, Christopher J / Colvin, Emily K / Pinese, Mark / Chang, David K / Morey, Adrienne L / Musgrove, Elizabeth A / Pajic, Marina / Apte, Minoti / Henshall, Susan M / Sutherland, Robert L / Kench, James G / Biankin, Andrew V. ·Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia. ·PLoS One · Pubmed #22022519.

ABSTRACT: BACKGROUND AND AIMS: Chronic pancreatitis and pancreatic cancer are characterised by extensive stellate cell mediated fibrosis, and current therapeutic development includes targeting pancreatic cancer stroma and tumor-host interactions. Recent evidence has suggested that circulating bone marrow derived stem cells (BMDC) contribute to solid organs. We aimed to define the role of circulating haematopoietic cells in the normal and diseased pancreas. METHODS: Whole bone marrow was harvested from male β-actin-EGFP donor mice and transplanted into irradiated female recipient C57/BL6 mice. Chronic pancreatitis was induced with repeat injections of caerulein, while carcinogenesis was induced with an intrapancreatic injection of dimethylbenzanthracene (DMBA). Phenotype of engrafted donor-derived cells within the pancreas was assessed by immunohistochemistry, immunofluorescence and in situ hybridisation. RESULTS: GFP positive cells were visible in the exocrine pancreatic epithelia from 3 months post transplantation. These exhibited acinar morphology and were positive for amylase and peanut agglutinin. Mice administered caerulein developed chronic pancreatitis while DMBA mice exhibited precursor lesions and pancreatic cancer. No acinar cells were identified to be donor-derived upon cessation of cerulein treatment, however rare occurrences of bone marrow-derived acinar cells were observed during pancreatic regeneration. Increased recruitment of BMDC was observed within the desmoplastic stroma, contributing to the activated pancreatic stellate cell (PaSC) population in both diseases. Expression of stellate cell markers CELSR3, PBX1 and GFAP was observed in BMD cancer-associated PaSCs, however cancer-associated, but not pancreatitis-associated BMD PaSCs, expressed the cancer PaSC specific marker CELSR3. CONCLUSIONS: This study demonstrates that BMDC can incorporate into the pancreas and adopt the differentiated state of the exocrine compartment. BMDC that contribute to the activated PaSC population in chronic pancreatitis and pancreatic cancer have different phenotypes, and may play important roles in these diseases. Further, bone marrow transplantation may provide a useful model for the study of tumor-host interactions in cancer and pancreatitis.