Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Xavier Molero
Based on 9 articles published since 2009
(Why 9 articles?)
||||

Between 2009 and 2019, X. Molero wrote the following 9 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Guideline [Recommendations for the diagnosis, staging and treatment of pre-malignant lesions and pancreatic adenocarcinoma]. 2016

Martin-Richard, Marta / Ginès, Angels / Ayuso, Juan Ramón / Sabater, Luis / Fabregat, Joan / Mendez, Ramiro / Fernández-Esparrach, Glòria / Molero, Xavier / Vaquero, Eva C / Cuatrecasas, Miriam / Ferrández, Antonio / Maurel, Joan / Anonymous3560884. ·Servicio de Oncología Médica, Hospital Sant Pau, Barcelona, España. Electronic address: mmartinri@santpau.cat. · Servicio de Gastroenterología, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, España. · Servicio de Radiología, Hospital Clínic de Barcelona, Barcelona, España. · Servicio de Cirugía, Hospital Clínico Universitario de Valencia, Valencia, España. · Servicio de Cirugía, Hospital de Bellvitge, Barcelona, España. · Servicio de Radiología, Hospital Clínico San Carlos, Madrid, España. · Servicio de Gastroenterología, Hospital Vall d'Hebron, Barcelona, España. · Servicio de Anatomía Patológica, Hospital Clínic de Barcelona, Barcelona, España. · Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, Valencia, España. · Servicio de Oncología Médica, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España. ·Med Clin (Barc) · Pubmed #27726847.

ABSTRACT: BACKGROUND AND OBJECTIVE: Clinical management of adenocarcinoma of the pancreas is complex, and requires a multidisciplinary approach. The same applies for the premalignant lesions that are increasingly being diagnosed. The current document is an update on the diagnosis and management of premalignant lesions and adenocarcinoma of the pancreas. PATIENTS AND METHODS: A conference to establish the basis of the literature review and manuscript redaction was organized by the Grupo Español Multidisciplinar en Cáncer Digestivo. Experts in the field from different specialties (Gastroenterology, Surgery, Radiology, Pathology, Medical Oncology and Radiation Oncology) met to prepare the present document. RESULTS: The current literature was reviewed and discussed, with subsequent deliberation on the evidence. CONCLUSIONS: Final recommendations were established in view of all the above.

2 Review Reduced risk of pancreatic cancer associated with asthma and nasal allergies. 2017

Gomez-Rubio, Paulina / Zock, Jan-Paul / Rava, Marta / Marquez, Mirari / Sharp, Linda / Hidalgo, Manuel / Carrato, Alfredo / Ilzarbe, Lucas / Michalski, Christoph / Molero, Xavier / Farré, Antoni / Perea, José / Greenhalf, William / O'Rorke, Michael / Tardón, Adonina / Gress, Thomas / Barberà, Victor / Crnogorac-Jurcevic, Tatjana / Domínguez-Muñoz, Enrique / Muñoz-Bellvís, Luís / Alvarez-Urturi, Cristina / Balcells, Joaquim / Barneo, Luis / Costello, Eithne / Guillén-Ponce, Carmen / Kleeff, Jörg / Kong, Bo / Lawlor, Rita / Löhr, Matthias / Mora, Josefina / Murray, Lim / O'Driscoll, Damian / Peláez, Pablo / Poves, Ignasi / Scarpa, Aldo / Real, Francisco X / Malats, Núria / Anonymous6460850. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain. · Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain. · National Cancer Registry Ireland, Cork, Ireland, and Institute of Health & Society, Newcastle University, UK. · Hospital Madrid-Norte-Sanchinarro, Madrid, Spain. · Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain. · Hospital del Mar-Parc de Salut Mar, Barcelona, Spain. · Technical University of Munich, Munich, Germany. · Exocrine Pancreas Research Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain. · Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. · Department of Surgery, 12 de Octubre University Hospital, Madrid, Spain. · The Royal Liverpool University Hospital, Liverpool, UK. · Centre for Public Health, Queen's University Belfast, Belfast, UK. · Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital Giessen and Marburg, Marburg, Germany. · Laboratorio de Genética Molecular, Hospital General Universitario de Elche, Elche, Spain. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK. · Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. · Cirugía General y del Aparato Digestivo, Hospital Universitario de Salamanca, Salamanca, Spain. · Department of Pathology and Diagnostics, University of Verona, Verona, Italy. · Gastrocentrum, Karolinska Institutet, Stockholm, Sweden. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ·Gut · Pubmed #26628509.

ABSTRACT: OBJECTIVE: Studies indicate an inverse association between ductal adenocarcinoma of the pancreas (PDAC) and nasal allergies. However, controversial findings are reported for the association with asthma. Understanding PDAC risk factors will help us to implement appropriate strategies to prevent, treat and diagnose this cancer. This study assessed and characterised the association between PDAC and asthma and corroborated existing reports regarding the association between allergies and PDAC risk. DESIGN: Information about asthma and allergies was collated from 1297 PDAC cases and 1024 controls included in the PanGenEU case-control study. Associations between PDAC and atopic diseases were studied using multilevel logistic regression analysis. Meta-analyses of association studies on these diseases and PDAC risk were performed applying random-effects model. RESULTS: Asthma was associated with lower risk of PDAC (OR 0.64, 95% CI 0.47 to 0.88), particularly long-standing asthma (>=17 years, OR 0.39, 95% CI 0.24 to 0.65). Meta-analysis of 10 case-control studies sustained our results (metaOR 0.73, 95% CI 0.59 to 0.89). Nasal allergies and related symptoms were associated with lower risk of PDAC (OR 0.66, 95% CI 0.52 to 0.83 and OR 0.59, 95% CI 0.46 to 0.77, respectively). These results were supported by a meta-analysis of nasal allergy studies (metaOR 0.6, 95% CI 0.5 to 0.72). Skin allergies were not associated with PDAC risk. CONCLUSIONS: This study shows a consistent inverse association between PDAC and asthma and nasal allergies, supporting the notion that atopic diseases are associated with reduced cancer risk. These results point to the involvement of immune and/or inflammatory factors that may either foster or restrain pancreas carcinogenesis warranting further research to understand the molecular mechanisms driving this association.

3 Article Pancreatic cancer and autoimmune diseases: An association sustained by computational and epidemiological case-control approaches. 2019

Gomez-Rubio, Paulina / Piñero, Janet / Molina-Montes, Esther / Gutiérrez-Sacristán, Alba / Marquez, Mirari / Rava, Marta / Michalski, Christoph W / Farré, Antoni / Molero, Xavier / Löhr, Matthias / Perea, José / Greenhalf, William / O'Rorke, Michael / Tardón, Adonina / Gress, Thomas / Barberá, Victor M / Crnogorac-Jurcevic, Tatjana / Muñoz-Bellvís, Luís / Domínguez-Muñoz, Enrique / Balsells, Joaquim / Costello, Eithne / Yu, Jingru / Iglesias, Mar / Ilzarbe, Lucas / Kleeff, Jörg / Kong, Bo / Mora, Josefina / Murray, Liam / O'Driscoll, Damian / Poves, Ignasi / Lawlor, Rita T / Ye, Weimin / Hidalgo, Manuel / Scarpa, Aldo / Sharp, Linda / Carrato, Alfredo / Real, Francisco X / Furlong, Laura I / Malats, Núria / Anonymous2321201. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center CNIO, Madrid, Spain. · Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Enfermedades Hepáticas y Digestivas (CIBERHD), and Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain. · Research Program on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Universidad Pompeu Fabra (UPF), Barcelona, Spain. · Department of Surgery, Technical University of Munich, Munich, Germany. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. · Hospital Universitaru Vall d'Hebron, Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Barcelona, Spain. · Universitat Auntònoma de Barcelona, Campus de la UAB, Barcelona, Spain. · Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and University Hospital, Stockholm, Sweden. · Department of Surgery, University Hospital 12 de Octubre, Madrid, Spain. · Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool, United Kingdom. · Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom. · Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany. · Laboratorio de Genética Molecular, Hospital General Universitario de Elche, Elche, Spain. · Centre for Molecular Oncology, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom. · General and Digestive Surgery Department, Hospital Universitario de Salamanca, Salamanca, Spain. · Department of Gastroenterology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain. · Department of Gastroenterology, Hospital del Mar/Parc de Salut Mar, Barcelona, Spain. · Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany. · Cancer Data Registrars, National Cancer Registry Ireland, Cork, Ireland. · ARC-Net Centre for Applied Research on Cancer, Department of Pathology and Diagnostics, University Hospital Trust of Verona, Verona, Italy. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet and University Hospital, Sweden. · Hospital Madrid-Norte-Sanchinarro and Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA. · Institute of Health and Society, Newcastle University, Newcastle upon Tyne, United Kingdom. · Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. · PanGenEU Study Investigators (Additional file 1: Annex S1). ·Int J Cancer · Pubmed #30229903.

ABSTRACT: Deciphering the underlying genetic basis behind pancreatic cancer (PC) and its associated multimorbidities will enhance our knowledge toward PC control. The study investigated the common genetic background of PC and different morbidities through a computational approach and further evaluated the less explored association between PC and autoimmune diseases (AIDs) through an epidemiological analysis. Gene-disease associations (GDAs) of 26 morbidities of interest and PC were obtained using the DisGeNET public discovery platform. The association between AIDs and PC pointed by the computational analysis was confirmed through multivariable logistic regression models in the PanGen European case-control study population of 1,705 PC cases and 1,084 controls. Fifteen morbidities shared at least one gene with PC in the DisGeNET database. Based on common genes, several AIDs were genetically associated with PC pointing to a potential link between them. An epidemiologic analysis confirmed that having any of the nine AIDs studied was significantly associated with a reduced risk of PC (Odds Ratio (OR) = 0.74, 95% confidence interval (CI) 0.58-0.93) which decreased in subjects having ≥2 AIDs (OR = 0.39, 95%CI 0.21-0.73). In independent analyses, polymyalgia rheumatica, and rheumatoid arthritis were significantly associated with low PC risk (OR = 0.40, 95%CI 0.19-0.89, and OR = 0.73, 95%CI 0.53-1.00, respectively). Several inflammatory-related morbidities shared a common genetic component with PC based on public databases. These molecular links could shed light into the molecular mechanisms underlying PC development and simultaneously generate novel hypotheses. In our study, we report sound findings pointing to an association between AIDs and a reduced risk of PC.

4 Article Resection of pancreatic cancer in Europe and USA: an international large-scale study highlighting large variations. 2019

Huang, Lei / Jansen, Lina / Balavarca, Yesilda / Molina-Montes, Esther / Babaei, Masoud / van der Geest, Lydia / Lemmens, Valery / Van Eycken, Liesbet / De Schutter, Harlinde / Johannesen, Tom B / Fristrup, Claus W / Mortensen, Michael B / Primic-Žakelj, Maja / Zadnik, Vesna / Becker, Nikolaus / Hackert, Thilo / Mägi, Margit / Cassetti, Tiziana / Sassatelli, Romano / Grützmann, Robert / Merkel, Susanne / Gonçalves, Ana F / Bento, Maria J / Hegyi, Péter / Lakatos, Gábor / Szentesi, Andrea / Moreau, Michel / van de Velde, Tony / Broeks, Annegien / Sant, Milena / Minicozzi, Pamela / Mazzaferro, Vincenzo / Real, Francisco X / Carrato, Alfredo / Molero, Xavier / Besselink, Marc G / Malats, Núria / Büchler, Markus W / Schrotz-King, Petra / Brenner, Hermann. ·Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · Geneticand Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, ISCIII, Madrid, Spain. · Netherlands Cancer Registry (NCR), Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, Netherlands. · Belgian Cancer Registry (BCR), Brussels, Belgium. · Registry Department, The Cancer Registry of Norway (CRN), Oslo, Norway. · Danish Pancreatic Cancer Database (DPCD), Odense, Denmark. · Danish Pancreatic Cancer Group, HPB Section, Department of Surgery, Odense University Hospital, Odense, Denmark. · Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Ljubljana, Slovenia. · Clinical Cancer Registry, DKFZ and NCT, Heidelberg, Germany. · Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany. · Estonian Cancer Registry, National Institute for Health Development, Tallinn, Estonia. · Pancreatic Cancer Registry of Reggio Emilia Province, Unit of Gastroenterology and Digestive Endoscopy AUSL-RE, Local Health Authority-IRCCS, Reggio Emilia, Italy. · Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany. · Departments of Epidemiology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal. · Institute for Translational Medicine, University of Pécs, Pécs, Hungary. · Department of Oncology, St. Istvan and St. Laszlo Hospital and Out-Patient Department, Budapest, Hungary. · Department of Surgical Oncology, Jules Bordet Institute (IJB), Brussels, Belgium. · Biometrics Department, The Netherlands Cancer Institute (NKI), Amsterdam, Netherlands. · Analytical Epidemiology and Health Impact Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy. · Hepato-Biliary Surgery Unit, Istituto Nazionale dei Tumori (INT), and University of Milan, Milan, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, Madrid, Spain. · Department de Ciencies Experimentals i de la, Universitat Pompeu Fabra, Barcelona, Spain. · Department of Oncology, Ramon y Cajal University Hospital, IRYCIS, Alcala University, CIBERONC, Madrid, Spain. · Hospital Universitari Vall d'Hebron, Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Campus de la UAB, Barcelona, Spain. · CIBEREHD and CIBERESP, Madrid, Spain. · Dutch Pancreatic Cancer Group, Academic Medical Centre Amsterdam, Amsterdam, Netherlands. ·Gut · Pubmed #29158237.

ABSTRACT: OBJECTIVE: Resection can potentially cure resectable pancreatic cancer (PaC) and significantly prolong survival in some patients. This large-scale international study aimed to investigate variations in resection for PaC in Europe and USA and determinants for its utilisation. DESIGN: Data from six European population-based cancer registries and the US Surveillance, Epidemiology, and End Results Program database during 2003-2016 were analysed. Age-standardised resection rates for overall and stage I-II PaCs were computed. Associations between resection and demographic and clinical parameters were assessed using multivariable logistic regression models. RESULTS: A total of 153 698 records were analysed. In population-based registries in 2012-2014, resection rates ranged from 13.2% (Estonia) to 21.2% (Slovenia) overall and from 34.8% (Norway) to 68.7% (Denmark) for stage I-II tumours, with great international variations. During 2003-2014, resection rates only increased in USA, the Netherlands and Denmark. Resection was significantly less frequently performed with more advanced tumour stage (ORs for stage III and IV versus stage I-II tumours: 0.05-0.18 and 0.01-0.06 across countries) and increasing age (ORs for patients 70-79 and ≥80 versus those <60 years: 0.37-0.63 and 0.03-0.16 across countries). Patients with advanced-stage tumours (stage III-IV: 63.8%-81.2%) and at older ages (≥70 years: 52.6%-59.5%) receiving less frequently resection comprised the majority of diagnosed cases. Patient performance status, tumour location and size were also associated with resection application. CONCLUSION: Rates of PaC resection remain low in Europe and USA with great international variations. Further studies are warranted to explore reasons for these variations.

5 Article Zeb1 in Stromal Myofibroblasts Promotes 2018

Sangrador, Irene / Molero, Xavier / Campbell, Fiona / Franch-Expósito, Sebastià / Rovira-Rigau, Maria / Samper, Esther / Domínguez-Fraile, Manuel / Fillat, Cristina / Castells, Antoni / Vaquero, Eva C. ·Gastrointestinal and pancreatic oncology research group, Hospital Clinic, Barcelona, CiberEHD, Spain. · Exocrine Pancreas Research Unit, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, CiberEHD, Barcelona, Spain. · Department of Pathology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom. · Gastroenterology Department, Hospital Clinic, IDIBAPS, CiberEHD, University of Barcelona, Barcelona, Spain. · Gene Therapy and Cancer, IDIBAPS, CiberER, University of Barcelona, Barcelona, Spain. · Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain. · Gastrointestinal and pancreatic oncology research group, Hospital Clinic, Barcelona, CiberEHD, Spain. evaquero@comb.cat. ·Cancer Res · Pubmed #29490942.

ABSTRACT: The transcription factor Zeb1 has been identified as a crucial player in Kras-dependent oncogenesis. In pancreatic ductal adenocarcinoma (PDAC), Zeb1 is highly expressed in myofibroblasts and correlates with poor prognosis. As Kras mutations are key drivers in PDAC, we aimed here to assess the necessity of Zeb1 for Kras-driven PDAC and to define the role of Zeb1-expressing myofibroblasts in PDAC development. Genetically engineered mice with conditional pancreatic

6 Article Risk of pancreatic cancer associated with family history of cancer and other medical conditions by accounting for smoking among relatives. 2018

Molina-Montes, E / Gomez-Rubio, P / Márquez, M / Rava, M / Löhr, M / Michalski, C W / Molero, X / Farré, A / Perea, J / Greenhalf, W / Ilzarbe, L / O'Rorke, M / Tardón, A / Gress, T / Barberà, V M / Crnogorac-Jurcevic, T / Domínguez-Muñoz, E / Muñoz-Bellvís, L / Balsells, J / Costello, E / Huang, J / Iglesias, M / Kleeff, J / Kong, Bo / Mora, J / Murray, L / O'Driscoll, D / Poves, I / Scarpa, A / Ye, W / Hidalgo, M / Sharp, L / Carrato, A / Real, F X / Malats, N / Anonymous601079. ·Spanish National Cancer Research Center (CNIO), Genetic and Molecular Epidemiology Group, Madrid, and CIBERONC, Spain. · Karolinska Institutet and University Hospital, Gastrocentrum, Stockholm, Sweden. · Technical University of Munich, Department of Surgery, Munich, Germany. · University of Heidelberg, Department of Surgery, Heidelberg, Germany. · Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, and CIBEREHD, Spain. · Hospital de la Santa Creu i Sant Pau, Department of Gastroenterology, Barcelona, Spain. · University Hospital 12 de Octubre, Department of Surgery, Madrid, Spain. · Royal Liverpool University Hospital, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK. · Hospital del Mar-Parc de Salut Mar, Barcelona, Spain. · Queen's University Belfast, Centre for Public Health, Belfast, UK. · Instituto Universitario de Oncología del Principado de Asturias, Department of Medicine, Oviedo, and CIBERESP, Spain. · University Hospital of Giessen and Marburg, Department of Gastroenterology, Marburg, Germany. · General University Hospital of Elche, Molecular Genetics Laboratory, Elche, Spain. · Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, London, UK. · University Clinical Hospital of Santiago de Compostela, Department of Gastroenterology, Santiago de Compostela, Spain. · Salamanca University Hospital, General and Digestive Surgery Department, Salamanca, Spain. · Martin-Luther-University Halle-Wittenberg, Department of Visceral, Vascular and Endocrine Surgery, Halle (Saale), Germany. · National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland. · ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. · Madrid-Norte-Sanchinarro Hospital, Madrid, Spain. · Newcastle University, Institute of Health and Society, Newcastle upon Tyne, UK. · Ramón y Cajal University Hospital, Department of Oncology, IRYCIS, Alcala University, Madrid, and CIBERONC, Spain. · Spanish National Cancer Research Centre (CNIO), Epithelial Carcinogenesis Group, Madrid, Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, and CIBERONC, Spain. ·Int J Epidemiol · Pubmed #29329392.

ABSTRACT: Background: Family history (FH) of pancreatic cancer (PC) has been associated with an increased risk of PC, but little is known regarding the role of inherited/environmental factors or that of FH of other comorbidities in PC risk. We aimed to address these issues using multiple methodological approaches. Methods: Case-control study including 1431 PC cases and 1090 controls and a reconstructed-cohort study (N = 16 747) made up of their first-degree relatives (FDR). Logistic regression was used to evaluate PC risk associated with FH of cancer, diabetes, allergies, asthma, cystic fibrosis and chronic pancreatitis by relative type and number of affected relatives, by smoking status and other potential effect modifiers, and by tumour stage and location. Familial aggregation of cancer was assessed within the cohort using Cox proportional hazard regression. Results: FH of PC was associated with an increased PC risk [odds ratio (OR) = 2.68; 95% confidence interval (CI): 2.27-4.06] when compared with cancer-free FH, the risk being greater when ≥ 2 FDRs suffered PC (OR = 3.88; 95% CI: 2.96-9.73) and among current smokers (OR = 3.16; 95% CI: 2.56-5.78, interaction FHPC*smoking P-value = 0.04). PC cumulative risk by age 75 was 2.2% among FDRs of cases and 0.7% in those of controls [hazard ratio (HR) = 2.42; 95% CI: 2.16-2.71]. PC risk was significantly associated with FH of cancer (OR = 1.30; 95% CI: 1.13-1.54) and diabetes (OR = 1.24; 95% CI: 1.01-1.52), but not with FH of other diseases. Conclusions: The concordant findings using both approaches strengthen the notion that FH of cancer, PC or diabetes confers a higher PC risk. Smoking notably increases PC risk associated with FH of PC. Further evaluation of these associations should be undertaken to guide PC prevention strategies.

7 Article A systems approach identifies time-dependent associations of multimorbidities with pancreatic cancer risk. 2017

Gomez-Rubio, P / Rosato, V / Márquez, M / Bosetti, C / Molina-Montes, E / Rava, M / Piñero, J / Michalski, C W / Farré, A / Molero, X / Löhr, M / Ilzarbe, L / Perea, J / Greenhalf, W / O'Rorke, M / Tardón, A / Gress, T / Barberá, V M / Crnogorac-Jurcevic, T / Muñoz-Bellvís, L / Domínguez-Muñoz, E / Gutiérrez-Sacristán, A / Balsells, J / Costello, E / Guillén-Ponce, C / Huang, J / Iglesias, M / Kleeff, J / Kong, B / Mora, J / Murray, L / O'Driscoll, D / Peláez, P / Poves, I / Lawlor, R T / Carrato, A / Hidalgo, M / Scarpa, A / Sharp, L / Furlong, L I / Real, F X / La Vecchia, C / Malats, N / Anonymous4870902. ·Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain. · Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro," Department of Clinical Sciences and Community Health, University of Milan, Milan. · Unit of Medical Statistics, Biometry and Bioinformatics, National Cancer Institute, IRCCS Foundation, Milan. · Department of Epidemiology, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy. · Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Pompeu Fabra Univeristy (UPF), Barcelona, Spain. · Department of Surgery, Technical University of Munich, Munich. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Gastroenterology, Santa Creu i Sant Pau Hospital, Barcelona. · Exocrine Pancreas Research Unit and Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona. · Department of Medicine, Universitat Autònoma de Barcelona, Barcelona. · Network of Biomedical Research Centres (CIBER), Hepatic and Digestive Diseases and Epidemiology and Public Health, Madrid, Spain. · Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden. · Department of Gastroenterology, Parc de Salut Mar University Hospital, Barcelona. · Department of Surgery, 12 de Octubre University Hospital, Madrid, Spain. · Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool. · Centre for Public Health, Queen's University Belfast, Belfast, UK. · Department of Medicine, University Institute of Oncology of Asturias, Oviedo, Spain. · Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany. · Molecular Genetics Laboratory, General University Hospital of Elche, Elche, Spain. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK. · General and Digestive Surgery Department, Salamanca University Hospital, Salamanca. · Department of Gastroenterology, Clinical University Hospital of Santiago de Compostela, Santiago de Compostela. · Department of Oncology, Ramón y Cajal Hospital, Madrid, and CIBERONC, Spain. · Research Programme, National Cancer Registry Ireland. · ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital trust of Verona, Verona, Italy. · Clara Campal Integrated Oncological Centre, Sanchinarro Hospital, Madrid, Spain. · Institute of Health & Society, Newcastle University, UK. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, and CIBERONC. · Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain. ·Ann Oncol · Pubmed #28383714.

ABSTRACT: Background: Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed in late adulthood; therefore, many patients suffer or have suffered from other diseases. Identifying disease patterns associated with PDAC risk may enable a better characterization of high-risk patients. Methods: Multimorbidity patterns (MPs) were assessed from 17 self-reported conditions using hierarchical clustering, principal component, and factor analyses in 1705 PDAC cases and 1084 controls from a European population. Their association with PDAC was evaluated using adjusted logistic regression models. Time since diagnosis of morbidities to PDAC diagnosis/recruitment was stratified into recent (<3 years) and long term (≥3 years). The MPs and PDAC genetic networks were explored with DisGeNET bioinformatics-tool which focuses on gene-diseases associations available in curated databases. Results: Three MPs were observed: gastric (heartburn, acid regurgitation, Helicobacter pylori infection, and ulcer), metabolic syndrome (obesity, type-2 diabetes, hypercholesterolemia, and hypertension), and atopic (nasal allergies, skin allergies, and asthma). Strong associations with PDAC were observed for ≥2 recently diagnosed gastric conditions [odds ratio (OR), 6.13; 95% confidence interval CI 3.01-12.5)] and for ≥3 recently diagnosed metabolic syndrome conditions (OR, 1.61; 95% CI 1.11-2.35). Atopic conditions were negatively associated with PDAC (high adherence score OR for tertile III, 0.45; 95% CI, 0.36-0.55). Combining type-2 diabetes with gastric MP resulted in higher PDAC risk for recent (OR, 7.89; 95% CI 3.9-16.1) and long-term diagnosed conditions (OR, 1.86; 95% CI 1.29-2.67). A common genetic basis between MPs and PDAC was observed in the bioinformatics analysis. Conclusions: Specific multimorbidities aggregate and associate with PDAC in a time-dependent manner. A better characterization of a high-risk population for PDAC may help in the early diagnosis of this cancer. The common genetic basis between MP and PDAC points to a mechanistic link between these conditions.

8 Article Autoimmune pancreatitis type-1 associated with intraduct papillary mucinous neoplasm: report of two cases. 2014

Vaquero, Eva C / Salcedo, Maria T / Cuatrecasas, Míriam / De León, Hannah / Merino, Xavier / Navarro, Salvador / Ginès, Angels / Abu-Suboh, Monder / Balsells, Joaquim / Fernández-Cruz, Laureano / Molero, Xavier. ·Department of Gastroenterology, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, CIBEREHD, IDIBAPS, Barcelona, Spain. · Department of Pathology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain. · Department of Pathology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic, University of Barcelona and Banc de Tumors-Biobanc Clinic-IDIBAPS-XBTC, Barcelona, Spain. · Exocrine Pancreatic Diseases Research Group, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, CIBEREHD, Barcelona, Spain. · Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain. · Department of Endoscopy, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain. · Department of Surgery, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain. · Department of Surgery, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, CIBEREHD, IDIBAPS, Barcelona, Spain. · Exocrine Pancreatic Diseases Research Group, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, CIBEREHD, Barcelona, Spain. Electronic address: xavier.molero@vhir.org. ·Pancreatology · Pubmed #25062884.

ABSTRACT: Chronic pancreatitis lesions usually embrace both intraduct papillary mucinous neoplasm (IPMN) and pancreatic ductal adenocarcinoma (PDAC). Patients at genetically-determined high risk of PDAC often harbor IPMN and/or chronic pancreatitis, suggesting IPMN, chronic pancreatitis and PDAC may share pathogenetic mechanisms. Chronic autoimmune pancreatitis (AIP) may also herald PDAC. Concurrent IPMN and AIP have been reported in few patients. Here we describe two patients with IPMN who developed type-1 AIP fulfilling the Honolulu and Boston diagnostic criteria. AIP diffusively affected the whole pancreas, as well as peripancreatic lymph nodes and the gallbladder. Previous pancreatic resection of focal IPMN did not show features of AIP. One of the patients carried a CFTR class-I mutation. Of notice, serum IgG4 levels gradually decreased to normal values after IPMN excision. Common risk factors to IPMN and AIP may facilitate its coincidental generation.

9 Article The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. 2009

Martínez-Romero, Carles / Rooman, Ilse / Skoudy, Anouchka / Guerra, Carmen / Molero, Xavier / González, Ana / Iglesias, Mar / Lobato, Tania / Bosch, Almudena / Barbacid, Mariano / Real, Francisco X / Hernández-Muñoz, Inmaculada. ·Institut Municipal d'Investigació Mèdica, Hospital del Mar, Barcelona, Spain. ·J Pathol · Pubmed #19585519.

ABSTRACT: Chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are associated with major changes in cell differentiation. These changes may be at the basis of the increased risk for PDAC among patients with chronic pancreatitis. Polycomb proteins are epigenetic silencers expressed in adult stem cells; up-regulation of Polycomb proteins has been reported to occur in a variety of solid tumours such as colon and breast cancer. We hypothesized that Polycomb might play a role in preneoplastic states in the pancreas and in tumour development/progression. To test these ideas, we determined the expression of PRC1 complex proteins (Bmi1 and Ring1b) during pancreatic development and in pancreatic tissue from mouse models of disease: acute and chronic pancreatic injury, duct ligation, and in K-Ras(G12V) conditional knock-in and caerulein-treated K-Ras(G12V) mice. The study was extended to human pancreatic tissue samples. To obtain mechanistic insights, Bmi1 expression in cells undergoing in vitro exocrine cell metaplasia and the effects of Bmi1 depletion in an acinar cancer cell line were studied. We found that Bmi1 and Ring1B are expressed in pancreatic exocrine precursor cells during early development and in ductal and islet cells-but not acinar cells-in the adult pancreas. Bmi1 expression was induced in acinar cells during acute injury, in acinar-ductal metaplastic lesions, as well as in pancreatic intraepithelial neoplasia (PanIN) and PDAC. In contrast, Ring1B expression was only significantly and persistently up-regulated in high-grade PanINs and in PDAC. Bmi1 knockdown in cultured acinar tumour cells led to changes in the expression of various digestive enzymes. Our results suggest that Bmi1 and Ring1B are modulated in pancreatic diseases and could contribute differently to tumour development.