Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Evelina Mocci
Based on 7 articles published since 2009
(Why 7 articles?)
||||

Between 2009 and 2019, E. Mocci wrote the following 7 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Risk of pancreatic cancer in breast cancer families from the breast cancer family registry. 2013

Mocci, Evelina / Milne, Roger L / Méndez-Villamil, Elena Yuste / Hopper, John L / John, Esther M / Andrulis, Irene L / Chung, Wendy K / Daly, Mary / Buys, Saundra S / Malats, Nuria / Goldgar, David E. ·Genetic and Molecular Epidemiology Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. ·Cancer Epidemiol Biomarkers Prev · Pubmed #23456555.

ABSTRACT: BACKGROUND: Increased risk of pancreatic cancer has been reported in breast cancer families carrying BRCA1and BRCA2 mutations; however, pancreatic cancer risk in mutation-negative (BRCAX) families has not been explored to date. The aim of this study was to estimate pancreatic cancer risk in high-risk breast cancer families according to the BRCA mutation status. METHODS: A retrospective cohort analysis was applied to estimate standardized incidence ratios (SIR) for pancreatic cancer. A total of 5,799 families with ≥1 breast cancer case tested for mutations in BRCA1 and/or BRCA2 were eligible. Families were divided into four classes: BRCA1, BRCA2, BRCAX with ≥2 breast cancer diagnosed before age 50 (class 3), and the remaining BRCAX families (class 4). RESULTS: BRCA1 mutation carriers were at increased risk of pancreatic cancer [SIR = 4.11; 95% confidence interval (CI), 2.94-5.76] as were BRCA2 mutation carriers (SIR = 5.79; 95% CI, 4.28-7.84). BRCAX family members were also at increased pancreatic cancer risk, which did not appear to vary by number of members with early-onset breast cancer (SIR = 1.31; 95% CI, 1.06-1.63 for class 3 and SIR = 1.30; 95% CI, 1.13-1.49 for class 4). CONCLUSIONS: Germline mutations in BRCA1 and BRCA2 are associated with an increased risk of pancreatic cancer. Members of BRCAX families are also at increased risk of pancreatic cancer, pointing to the existence of other genetic factors that increase the risk of both pancreatic cancer and breast cancer. IMPACT: This study clarifies the relationship between familial breast cancer and pancreatic cancer. Given its high mortality, pancreatic cancer should be included in risk assessment in familial breast cancer counseling.

2 Article Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. 2018

Klein, Alison P / Wolpin, Brian M / Risch, Harvey A / Stolzenberg-Solomon, Rachael Z / Mocci, Evelina / Zhang, Mingfeng / Canzian, Federico / Childs, Erica J / Hoskins, Jason W / Jermusyk, Ashley / Zhong, Jun / Chen, Fei / Albanes, Demetrius / Andreotti, Gabriella / Arslan, Alan A / Babic, Ana / Bamlet, William R / Beane-Freeman, Laura / Berndt, Sonja I / Blackford, Amanda / Borges, Michael / Borgida, Ayelet / Bracci, Paige M / Brais, Lauren / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, Bas / Buring, Julie / Campa, Daniele / Capurso, Gabriele / Cavestro, Giulia Martina / Chaffee, Kari G / Chung, Charles C / Cleary, Sean / Cotterchio, Michelle / Dijk, Frederike / Duell, Eric J / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gallinger, Steven / M Gaziano, J Michael / Gazouli, Maria / Giles, Graham G / Giovannucci, Edward / Goggins, Michael / Goodman, Gary E / Goodman, Phyllis J / Hackert, Thilo / Haiman, Christopher / Hartge, Patricia / Hasan, Manal / Hegyi, Peter / Helzlsouer, Kathy J / Herman, Joseph / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert / Hung, Rayjean J / Jacobs, Eric J / Jamroziak, Krzysztof / Janout, Vladimir / Kaaks, Rudolf / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Kooperberg, Charles / Kulke, Matthew H / Kupcinskas, Juozas / Kurtz, Robert J / Laheru, Daniel / Landi, Stefano / Lawlor, Rita T / Lee, I-Min / LeMarchand, Loic / Lu, Lingeng / Malats, Núria / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Mohelníková-Duchoňová, Beatrice / Neale, Rachel E / Neoptolemos, John P / Oberg, Ann L / Olson, Sara H / Orlow, Irene / Pasquali, Claudio / Patel, Alpa V / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Real, Francisco X / Rothman, Nathaniel / Scelo, Ghislaine / Sesso, Howard D / Severi, Gianluca / Shu, Xiao-Ou / Silverman, Debra / Smith, Jill P / Soucek, Pavel / Sund, Malin / Talar-Wojnarowska, Renata / Tavano, Francesca / Thornquist, Mark D / Tobias, Geoffrey S / Van Den Eeden, Stephen K / Vashist, Yogesh / Visvanathan, Kala / Vodicka, Pavel / Wactawski-Wende, Jean / Wang, Zhaoming / Wentzensen, Nicolas / White, Emily / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Zheng, Wei / Kraft, Peter / Li, Donghui / Chanock, Stephen / Obazee, Ofure / Petersen, Gloria M / Amundadottir, Laufey T. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. aklein1@jhmi.edu. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA. · Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA. · International Agency for Research on Cancer (IARC), 69372, Lyon, France. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. · Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA. · Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. · Department of Biology, University of Pisa, 56126, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA. · Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada. · Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic. · Yale Cancer Center, New Haven, CT, 06510, USA. · Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy. · Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA. · Boston VA Healthcare System, Boston, MA, 02132, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany. · Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA. · Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA. · First Department of Medicine, University of Szeged, 6725, Szeged, Hungary. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic. · Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA. · Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland. · Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic. · Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. · ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain. · CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain. · Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain. · Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy. · Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain. · CIBERONC, 28029, Madrid, Spain. · Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy. · Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland. · Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic. · Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia. · Department of General Surgery, University of Heidelburg, Heidelberg, Germany. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain. · Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. · Department of Medicine, Georgetown University, Washington, 20057, USA. · Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic. · Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, 90-647, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy. · Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic. · Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA. · Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. amundadottirl@mail.nih.gov. ·Nat Commun · Pubmed #29422604.

ABSTRACT: In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10

3 Article Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. 2016

Zhang, Mingfeng / Wang, Zhaoming / Obazee, Ofure / Jia, Jinping / Childs, Erica J / Hoskins, Jason / Figlioli, Gisella / Mocci, Evelina / Collins, Irene / Chung, Charles C / Hautman, Christopher / Arslan, Alan A / Beane-Freeman, Laura / Bracci, Paige M / Buring, Julie / Duell, Eric J / Gallinger, Steven / Giles, Graham G / Goodman, Gary E / Goodman, Phyllis J / Kamineni, Aruna / Kolonel, Laurence N / Kulke, Matthew H / Malats, Núria / Olson, Sara H / Sesso, Howard D / Visvanathan, Kala / White, Emily / Zheng, Wei / Abnet, Christian C / Albanes, Demetrius / Andreotti, Gabriella / Brais, Lauren / Bueno-de-Mesquita, H Bas / Basso, Daniela / Berndt, Sonja I / Boutron-Ruault, Marie-Christine / Bijlsma, Maarten F / Brenner, Hermann / Burdette, Laurie / Campa, Daniele / Caporaso, Neil E / Capurso, Gabriele / Cavestro, Giulia Martina / Cotterchio, Michelle / Costello, Eithne / Elena, Joanne / Boggi, Ugo / Gaziano, J Michael / Gazouli, Maria / Giovannucci, Edward L / Goggins, Michael / Gross, Myron / Haiman, Christopher A / Hassan, Manal / Helzlsouer, Kathy J / Hu, Nan / Hunter, David J / Iskierka-Jazdzewska, Elzbieta / Jenab, Mazda / Kaaks, Rudolf / Key, Timothy J / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Krogh, Vittorio / Kupcinskas, Juozas / Kurtz, Robert C / Landi, Maria T / Landi, Stefano / Le Marchand, Loic / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Neale, Rachel E / Oberg, Ann L / Panico, Salvatore / Patel, Alpa V / Peeters, Petra H M / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Purdue, Mark / Quiros, J Ramón / Riboli, Elio / Rothman, Nathaniel / Scarpa, Aldo / Scelo, Ghislaine / Shu, Xiao-Ou / Silverman, Debra T / Soucek, Pavel / Strobel, Oliver / Sund, Malin / Małecka-Panas, Ewa / Taylor, Philip R / Tavano, Francesca / Travis, Ruth C / Thornquist, Mark / Tjønneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Vashist, Yogesh / Vodicka, Pavel / Wactawski-Wende, Jean / Wentzensen, Nicolas / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Kooperberg, Charles / Risch, Harvey A / Jacobs, Eric J / Li, Donghui / Fuchs, Charles / Hoover, Robert / Hartge, Patricia / Chanock, Stephen J / Petersen, Gloria M / Stolzenberg-Solomon, Rachael S / Wolpin, Brian M / Kraft, Peter / Klein, Alison P / Canzian, Federico / Amundadottir, Laufey T. ·Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA. · New York University Cancer Institute, New York, New York, USA,. · Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA. · Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain. · Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. · Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. · Group Health Research Institute, Seattle, Washington, USA,. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. · Genetic and Molecular Epidemiology Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain. · Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. · Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. · Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. · Department of Epidemiology, University of Washington, Seattle, Washington, USA. · Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. · Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Department of Laboratory Medicine, University Hospital of Padova, Padua, Italy,. · Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, F-94805, Villejuif, France. · University Paris Sud, UMRS 1018, F-94805, Villejuif, France. · IGR, F-94805, Villejuif, France. · Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. · German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Biology, University of Pisa, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy. · Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · Massachusetts Veteran's Epidemiology, Research, and Information Center, Geriatric Research Education and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece. · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA. · Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA. · Department of Pathology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Department of Medicine, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Department of Oncology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA. · Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA. · Preventive Medicine, University of Southern California, Los Angeles, California, USA. · Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA. · Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Harvard School of Public Health, Boston, Massachusetts, USA. · Harvard Medical School, Boston, Massachusetts, USA. · Department of Hematology, Medical University of Łodz, Łodz, Poland. · International Agency for Research on Cancer (IARC), Lyon, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom. · School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA. · Centre de Recerca en Epidemiologia Ambiental (CREAL), CIBER Epidemiología y Salud Pública (CIBERESP), Spain. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain. · National School of Public Health, Athens, Greece. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. · Oncology Department, ASL1 Massa Carrara, Massa Carrara, Italy. · National Institute for Health and Welfare, Department of Chronic Disease Prevention, Helsinki, Finland. · Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Dipartimento di Medicina Clinica E Chirurgia, Federico II Univeristy, Naples, Italy. · Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Public Health and Participation Directorate, Asturias, Spain. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Department of Surgical and Peroperative Sciences, Umeå University, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy. · Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark. · Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. · Hellenic Health Foundation, Athens, Greece. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, Hamburg, Germany. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic. · Department of Social and Preventive Medicine, University at Buffalo, Buffalo, New York, USA. · New York University Cancer Institute, New York, New York, USA. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA. · Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA. · Department of Epidemiology, the Bloomberg School of Public Health, Baltimore, Maryland, USA. ·Oncotarget · Pubmed #27579533.

ABSTRACT: Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.

4 Article Refinement of screening for familial pancreatic cancer. 2016

Bartsch, D K / Slater, E P / Carrato, A / Ibrahim, I S / Guillen-Ponce, C / Vasen, H F A / Matthäi, E / Earl, J / Jendryschek, F S / Figiel, J / Steinkamp, M / Ramaswamy, A / Vázquez-Sequeiros, E / Muñoz-Beltran, M / Montans, J / Mocci, E / Bonsing, B A / Wasser, M / Klöppel, G / Langer, P / Fendrich, V / Gress, T M. ·Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany. · Department of Medical Oncology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands. · Department of Radiology, Philipps University Marburg, Marburg, Germany. · Department of Gastroenterology and Endocrinology, Philipps University Marburg, Marburg, Germany. · Department of Pathology, Philipps University Marburg, Marburg, Germany. · Department of Gastroenterology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Department of Radiology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Department of Pathology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands. · Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands. · Department of Pathology, Consultation Centre for Pancreatic Tumors, Technical University Munich, Munich, Germany. · Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany Department of General Surgery, Klinikum Hanau GmbH, Hanau, Germany. ·Gut · Pubmed #27222532.

ABSTRACT: OBJECTIVE: Surveillance programmes are recommended for individuals at risk (IAR) of familial pancreatic cancer (FPC) to detect early pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC). However, the age to begin screening and the optimal screening protocol remain to be determined. METHODS: IAR from non-CDKN2A FPC families underwent annual screening by MRI with endoscopic ultrasonography (EUS) in board-approved prospective screening programmes at three tertiary referral centres. The diagnostic yield according to age and different screening protocols was analysed. RESULTS: 253 IAR with a median age of 48 (25-81) years underwent screening with a median of 3 (1-11) screening visits during a median follow-up of 28 (1-152) months. 134 (53%) IAR revealed pancreatic lesions on imaging, mostly cystic (94%), on baseline or follow-up screening. Lesions were significantly more often identified in IAR above the age of 45 years (p<0.0001). In 21 IAR who underwent surgery, no significant lesions (PDAC, pancreatic intraepithelial neoplasia (PanIN) 3 lesions, high-grade intraductal papillary mucinous neoplasia (IPMN)) were detected before the age of 50 years. Potentially relevant lesions (multifocal PanIN2 lesions, low/moderate-grade branch-duct IPMNs) occurred also significantly more often after the age of 50 years (13 vs 2, p<0.0004). The diagnostic yield of potentially relevant lesions was not different between screening protocols using annual MRI with EUS (n=98) or annual MRI with EUS every 3rd year (n=198) and between IAR screened at intervals of 12 months (n=180) or IAR that decided to be screened at ≥24 months intervals (n=30). CONCLUSIONS: It appears safe to start screening for PDAC in IAR of non-CDKN2a FPC families at the age of 50 years. MRI-based screening supplemented by EUS at baseline and every 3rd year or when changes in MRI occur appears to be efficient.

5 Article Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies From Three European Expert Centers. 2016

Vasen, Hans / Ibrahim, Isaura / Ponce, Carmen Guillen / Slater, Emily P / Matthäi, Elvira / Carrato, Alfredo / Earl, Julie / Robbers, Kristin / van Mil, Anneke M / Potjer, Thomas / Bonsing, Bert A / de Vos Tot Nederveen Cappel, Wouter H / Bergman, Wilma / Wasser, Martin / Morreau, Hans / Klöppel, Günter / Schicker, Christoph / Steinkamp, Martin / Figiel, Jens / Esposito, Irene / Mocci, Evelina / Vazquez-Sequeiros, Enrique / Sanjuanbenito, Alfonso / Muñoz-Beltran, Maria / Montans, José / Langer, Peter / Fendrich, Volker / Bartsch, Detlef K. ·Hans Vasen, Isaura Ibrahim, Kristin Robbers, Anneke M. van Mil, Thomas Potjer, Bert A. Bonsing, Wilma Bergman, Martin Wasser, and Hans Morreau, Leiden University Medical Center, Leiden · Wouter H. de Vos tot Nederveen Cappel, Isala Clinics, Zwolle, the Netherlands · Carmen Guillen Ponce, Alfredo Carrato, Julie Earl, Evelina Mocci, Enrique Vazquez-Sequeiros, Alfonso Sanjuanbenito, Maria Muñoz-Beltran, and José Montans, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, Madrid, Spain · Emily P. Slater, Elvira Matthäi, Volker Fendrich, and Detlef K. Bartsch, University Hospital Marburg · Christoph Schicker, Martin Steinkamp, and Jens Figiel, Philipps University Marburg, Marburg · Günter Klöppel, Consultation Centre for Pancreatic and Endocrine Tumors, Technical University Munich · Peter Langer, Klinikum Hanau, Hanau, Germany · and Irene Esposito, Innsbruck University Hospital, Innsbruck, Austria. ·J Clin Oncol · Pubmed #27114589.

ABSTRACT: PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Hereditary factors play a role in the development of PDAC in 3% to 5% of all patients. Surveillance of high-risk groups, may facilitate detection of PDAC at an early stage. The aim of this study was to assess whether surveillance aids detection of early-stage PDAC or precursor lesions (PRLs) and improves the prognosis. PATIENTS AND METHODS: Screening outcomes were collected from three European centers that conduct prospective screening in high-risk groups including families with clustering of PDAC (familial pancreatic cancer [FPC]) or families with a gene defect that predisposes to PDAC. The surveillance program consisted of annual magnetic resonance imaging, magnetic resonance cholangiopancreatography, and/or endoscopic ultrasound. RESULTS: Four hundred eleven asymptomatic individuals participated in the surveillance programs, including 178 CDKN2A mutation carriers, 214 individuals with FPC, and 19 BRCA1/2 or PALB2 mutation carriers. PDAC was detected in 13 (7.3%) of 178 CDKN2A mutation carriers. The resection rate was 75%, and the 5-year survival rate was 24%. Two CDKN2A mutation carriers (1%) underwent surgical resection for low-risk PRL. Two individuals (0.9%) in the FPC cohort had a pancreatic tumor, including one advanced PDAC and one early grade 2 neuroendocrine tumor. Thirteen individuals with FPC (6.1%) underwent surgical resection for a suspected PRL, but only four (1.9%) had high-risk lesions (ie, high-grade intraductal papillary mucinous neoplasms or grade 3 pancreatic intraepithelial neoplasms). One BRCA2 mutation carrier was found to have PDAC, and another BRCA2 mutation carrier and a PALB2 mutation carrier underwent surgery and were found to have low-risk PRL. No serious complications occurred as consequence of the program. CONCLUSION: Surveillance of CDNK2A mutation carriers is relatively successful, detecting most PDACs at a resectable stage. The benefit of surveillance in families with FPC is less evident.

6 Article PanGen-Fam: Spanish registry of hereditary pancreatic cancer. 2015

Mocci, E / Guillen-Ponce, C / Earl, J / Marquez, M / Solera, J / Salazar-López, M-T / Calcedo-Arnáiz, C / Vázquez-Sequeiros, E / Montans, J / Muñoz-Beltrán, M / Vicente-Bártulos, A / González-Gordaliza, C / Sanjuanbenito, A / Guerrero, C / Mendía, E / Lisa, E / Lobo, E / Martínez, J C / Real, F X / Malats, N / Carrato, A. ·Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. · Molecular Oncogenetics Unit, Institute of Medical and Molecular Genetics, La Paz Hospital, Madrid, Spain. · Digestive Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Pathology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Radiology Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Surgery Department, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. ·Eur J Cancer · Pubmed #26212471.

ABSTRACT: PURPOSE: To describe the organisation of the registry and the preliminary results in terms of characteristics of high-risk pancreatic ductal adenocarcinoma (PDAC) families recruited to date and findings of the screening programme. To compare early onset sporadic cases (⩽50 years), sporadic cases (>50 years) and cases with family history of cancer, for PDAC possible risk factors. METHODS/PATIENTS: Families with hereditary cancer syndromes predisposing to PDAC were recruited from two main sources: Spanish hospitals participating in PanGenEU, a pan-European multicentre case-control study, and their genetic counseling unit. Individuals at high-risk of PDAC were enrolled into a screening programme, consisting of Endoscopic ultrasound, computerised tomography, magnetic resonance imaging. Genetic testing of candidate genes was offered according to each patient's risk. RESULTS: Among 577 consecutive PDAC cases, recruited via PanGenEU, 36 (6%) had ⩾2 first-degree relative with PDAC: Familial pancreatic cancer (FPC). So far PanGen-Fam has recruited 42 high-risk PDAC families; 25 (60%) had FPC. Five index cases with cancer were positive for BRCA2 and one for BRCA1 germline mutations. In the second year of prospective PDAC screening, one neuroendocrine tumour and a high-grade dysplasia lesion suspicious of carcinoma were diagnosed among 41 high-risk individuals. Furthermore EUS detected chronic-pancreatitis-like parenchymal changes in 15 patients. CONCLUDING STATEMENT: The identification and recruitment of PDAC high-risk families into the PanGen-Fam registry provides an opportunity to detect early onset cancer and precursor pancreatic cancer lesions at a potentially curative stage and to increase the knowledge of the natural history of the disease.

7 Article Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. 2015

Childs, Erica J / Mocci, Evelina / Campa, Daniele / Bracci, Paige M / Gallinger, Steven / Goggins, Michael / Li, Donghui / Neale, Rachel E / Olson, Sara H / Scelo, Ghislaine / Amundadottir, Laufey T / Bamlet, William R / Bijlsma, Maarten F / Blackford, Amanda / Borges, Michael / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, H Bas / Canzian, Federico / Capurso, Gabriele / Cavestro, Giulia M / Chaffee, Kari G / Chanock, Stephen J / Cleary, Sean P / Cotterchio, Michelle / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gazouli, Maria / Hassan, Manal / Herman, Joseph M / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert N / Hung, Rayjean J / Janout, Vladimir / Key, Timothy J / Kupcinskas, Juozas / Kurtz, Robert C / Landi, Stefano / Lu, Lingeng / Malecka-Panas, Ewa / Mambrini, Andrea / Mohelnikova-Duchonova, Beatrice / Neoptolemos, John P / Oberg, Ann L / Orlow, Irene / Pasquali, Claudio / Pezzilli, Raffaele / Rizzato, Cosmeri / Saldia, Amethyst / Scarpa, Aldo / Stolzenberg-Solomon, Rachael Z / Strobel, Oliver / Tavano, Francesca / Vashist, Yogesh K / Vodicka, Pavel / Wolpin, Brian M / Yu, Herbert / Petersen, Gloria M / Risch, Harvey A / Klein, Alison P. ·Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. · 1] Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. [2] Department of Biology, University of Pisa, Pisa, Italy. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. · Department of Population Health, QIMR Berghofer Medical Research Institute, Kelvin Grove,Queensland, Australia. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA. · International Agency for Research on Cancer (IARC), Lyon, France. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA. · Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany. · 1] Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. [2] Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. [3] Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. [4] Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy. · Università Vita Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy. · 1] Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada. [2] Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. · 1] Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada. [2] Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and Medical Faculty Masaryk University, Brno, Czech Republic. · 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · Department of Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece. · Department of Radiation Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. · Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic. · Cancer Epidemiology Unit, University of Oxford, Oxford, UK. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. · Department of Biology, Section of Genetics, University of Pisa, Pisa, Italy. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA. · Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland. · Department of Oncology, Azienda USL 1 Massa Carrara, Massa Carrara, Italy. · Laboratory of Toxicogenomics, Institute of Public Health, Prague, Czech Republic. · National Institute for Health Research (NIHR) Pancreas Biomedical Research Unit, Liverpool Clinical Trials Unit and Cancer Research UK Clinical Trials Unit, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. · Department of Surgery, Gastroenterology and Oncology, University of Padua, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · ARC-NET-Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Rockville, Maryland, USA. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Italy. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. · 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. · 1] Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. [2] Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. ·Nat Genet · Pubmed #26098869.

ABSTRACT: Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.