Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Gary William Middleton
Based on 9 articles published since 2009
(Why 9 articles?)
||||

Between 2009 and 2019, G. Middleton wrote the following 9 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Editorial HOX genes in pancreatic development and cancer. 2011

Gray, Sophie / Pandha, Hardev S / Michael, Agnieszka / Middleton, Gary / Morgan, Richard. · ·JOP · Pubmed #21546695.

ABSTRACT: The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development and which are subsequently re-expressed in many types of cancer. Some recent studies have shown that HOX genes may have key roles both in pancreatic development and in adult diseases of the pancreas, including cancer. In this review we consider recent advances in elucidating the role of HOX genes in these processes, how they may connect early developmental events to subsequent adult disease, and their potential both as diagnostic markers and therapeutic targets.

2 Clinical Trial Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial. 2017

Middleton, Gary / Palmer, Daniel H / Greenhalf, William / Ghaneh, Paula / Jackson, Richard / Cox, Trevor / Evans, Anthony / Shaw, Victoria E / Wadsley, Jonathan / Valle, Juan W / Propper, David / Wasan, Harpreet / Falk, Stephen / Cunningham, David / Coxon, Fareeda / Ross, Paul / Madhusudan, Srinivasan / Wadd, Nick / Corrie, Pippa / Hickish, Tamas / Costello, Eithne / Campbell, Fiona / Rawcliffe, Charlotte / Neoptolemos, John P. ·University of Birmingham, Edgbaston, Birmingham, UK. · Liverpool Cancer Research UK Cancer Trials Unit and LCTU-GCPLabs, University of Liverpool, Liverpool, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, UK. · Liverpool Cancer Research UK Cancer Trials Unit and LCTU-GCPLabs, University of Liverpool, Liverpool, UK. · Weston Park Hospital, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK. · Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK; Christie NHS Foundation Trust, Manchester, UK. · Centre for Cancer and Inflammation, Barts Cancer Institute, London, UK. · Hammersmith Hospital, London, UK. · Bristol Haematology and Oncology Centre, University Hospital Bristol NHS Foundation Trust, Bristol, UK. · Royal Marsden, Royal Marsden NHS Foundation Trust, London, UK. · Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK. · Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK. · Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK. · James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middlesborough, UK. · Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. · Poole Hospital NHS Foundation Trust, Bournemouth University, Poole, UK. · Liverpool Cancer Research UK Cancer Trials Unit and LCTU-GCPLabs, University of Liverpool, Liverpool, UK. Electronic address: j.p.neoptolemos@liverpool.ac.uk. ·Lancet Oncol · Pubmed #28259610.

ABSTRACT: BACKGROUND: Erlotinib is an EGFR tyrosine kinase inhibitor that has shown a significant but only marginally improved median overall survival when combined with gemcitabine in patients with locally advanced and metastatic pancreatic cancer. Vandetanib is a novel tyrosine kinase inhibitor of VEGFR2, RET, and EGFR, all of which are in involved in the pathogenesis of pancreatic cancer. We investigated the clinical efficacy of vandetanib when used in combination with gemcitabine in patients with advanced pancreatic cancer. METHODS: The Vandetanib in Pancreatic Cancer (ViP) trial was a phase 2 double-blind, multicentre, randomised placebo-controlled trial in previously untreated adult patients (aged ≥18 years) diagnosed with locally advanced or metastatic carcinoma of the pancreas confirmed by cytology or histology. Patients had to have an Eastern Cooperative Oncology Group (ECOG) score of 0-2 and a documented life expectancy of at least 3 months. Patients were randomly assigned 1:1 to receive vandetanib plus gemcitabine (vandetanib group) or placebo plus gemcitabine (placebo group) according to pre-generated sequences produced on the principle of randomly permuted blocks with variable block sizes of two and four. Patients were stratified at randomisation by disease stage and ECOG performance status. All patients received gemcitabine 1000 mg/m FINDINGS: Patients were screened and enrolled between Oct 24, 2011, and Oct 7, 2013. Of 381 patients screened, 142 eligible patients were randomly assigned to treatment (72 to the vandetanib group and 70 to the placebo group). At database lock on July 15, 2015, at a median follow-up of 24·9 months (IQR 24·3 to not attainable), 131 patients had died: 70 (97%) of 72 in the vandetanib group and 61 (87%) of 70 in the placebo group. The median overall survival was 8·83 months (95% CI 7·11-11·58) in the vandetanib group and 8·95 months (6·55-11·74) in the placebo group (hazard ratio 1·21, 80·8% CI 0·95-1·53; log rank χ INTERPRETATION: The addition of vandetanib to gemcitabine monotherapy did not improve overall survival in advanced pancreatic cancer. Tyrosine kinase inhibitors might still have potential in the treatment of pancreatic cancer but further development requires the identification of biomarkers to specifically identify responsive cancer subtypes. FUNDING: Cancer Research UK and AstraZeneca.

3 Clinical Trial Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. 2017

Neoptolemos, John P / Palmer, Daniel H / Ghaneh, Paula / Psarelli, Eftychia E / Valle, Juan W / Halloran, Christopher M / Faluyi, Olusola / O'Reilly, Derek A / Cunningham, David / Wadsley, Jonathan / Darby, Suzanne / Meyer, Tim / Gillmore, Roopinder / Anthoney, Alan / Lind, Pehr / Glimelius, Bengt / Falk, Stephen / Izbicki, Jakob R / Middleton, Gary William / Cummins, Sebastian / Ross, Paul J / Wasan, Harpreet / McDonald, Alec / Crosby, Tom / Ma, Yuk Ting / Patel, Kinnari / Sherriff, David / Soomal, Rubin / Borg, David / Sothi, Sharmila / Hammel, Pascal / Hackert, Thilo / Jackson, Richard / Büchler, Markus W / Anonymous2721324. ·University of Liverpool, Liverpool, UK; The Royal Liverpool University Hospital, Liverpool, UK. Electronic address: j.p.neoptolemos@liverpool.ac.uk. · University of Liverpool, Liverpool, UK; The Clatterbridge Cancer Centre, Wirral, UK. · The Royal Liverpool University Hospital, Liverpool, UK. · University of Liverpool, Liverpool, UK. · University of Manchester/The Christie NHS Foundation Trust, Manchester, UK. · University of Liverpool, Liverpool, UK; The Royal Liverpool University Hospital, Liverpool, UK. · The Clatterbridge Cancer Centre, Wirral, UK. · Manchester Royal Infirmary, Manchester, UK. · Royal Marsden Hospital, London, UK. · Weston Park Hospital, Sheffield, UK. · Royal Free Hospital, London, UK. · St James's University Hospital, Leeds, UK. · Karolinska Institute, Stockholm, Sweden; Clinical Research Sörmland, Eskilstuna, Sweden. · University of Uppsala, Uppsala, Sweden. · Bristol Haematology and Oncology Centre, Bristol, UK. · University of Hamburg Medical institutions UKE, Hamburg, Germany. · Royal Surrey County Hospital, Guildford, UK. · Guy's Hospital, London, UK. · Hammersmith Hospital, London, UK. · The Beatson West of Scotland Cancer Centre, Glasgow, UK. · Velindre Hospital, Cardiff, UK. · Queen Elizabeth Hospital, Birmingham, UK. · Churchill Hospital, Oxford, UK. · Derriford Hospital, Plymouth, UK. · Ipswich Hospital, Ipswich, UK. · Skåne University Hospital, Lund, Sweden. · University Hospital Coventry, Coventry, UK. · Hôpital Beaujon, Clichy, France. · University of Heidelberg, Germany. ·Lancet · Pubmed #28129987.

ABSTRACT: BACKGROUND: The ESPAC-3 trial showed that adjuvant gemcitabine is the standard of care based on similar survival to and less toxicity than adjuvant 5-fluorouracil/folinic acid in patients with resected pancreatic cancer. Other clinical trials have shown better survival and tumour response with gemcitabine and capecitabine than with gemcitabine alone in advanced or metastatic pancreatic cancer. We aimed to determine the efficacy and safety of gemcitabine and capecitabine compared with gemcitabine monotherapy for resected pancreatic cancer. METHODS: We did a phase 3, two-group, open-label, multicentre, randomised clinical trial at 92 hospitals in England, Scotland, Wales, Germany, France, and Sweden. Eligible patients were aged 18 years or older and had undergone complete macroscopic resection for ductal adenocarcinoma of the pancreas (R0 or R1 resection). We randomly assigned patients (1:1) within 12 weeks of surgery to receive six cycles of either 1000 mg/m FINDINGS: Of 732 patients enrolled, 730 were included in the final analysis. Of these, 366 were randomly assigned to receive gemcitabine and 364 to gemcitabine plus capecitabine. The Independent Data and Safety Monitoring Committee requested reporting of the results after there were 458 (95%) of a target of 480 deaths. The median overall survival for patients in the gemcitabine plus capecitabine group was 28·0 months (95% CI 23·5-31·5) compared with 25·5 months (22·7-27·9) in the gemcitabine group (hazard ratio 0·82 [95% CI 0·68-0·98], p=0·032). 608 grade 3-4 adverse events were reported by 226 of 359 patients in the gemcitabine plus capecitabine group compared with 481 grade 3-4 adverse events in 196 of 366 patients in the gemcitabine group. INTERPRETATION: The adjuvant combination of gemcitabine and capecitabine should be the new standard of care following resection for pancreatic ductal adenocarcinoma. FUNDING: Cancer Research UK.

4 Clinical Trial Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. 2014

Middleton, Gary / Silcocks, Paul / Cox, Trevor / Valle, Juan / Wadsley, Jonathan / Propper, David / Coxon, Fareeda / Ross, Paul / Madhusudan, Srinivasan / Roques, Tom / Cunningham, David / Falk, Stephen / Wadd, Nick / Harrison, Mark / Corrie, Pippa / Iveson, Tim / Robinson, Angus / McAdam, Karen / Eatock, Martin / Evans, Jeff / Archer, Caroline / Hickish, Tamas / Garcia-Alonso, Angel / Nicolson, Marianne / Steward, William / Anthoney, Alan / Greenhalf, William / Shaw, Victoria / Costello, Eithne / Naisbitt, Dean / Rawcliffe, Charlotte / Nanson, Gemma / Neoptolemos, John. ·University of Birmingham, Edgbaston, Birmingham, UK. · Liverpool Cancer Research UK Cancer Trials Unit and GCLP Facility, University of Liverpool, Liverpool, UK. · Manchester Academic Health Sciences Centre, Christie Hospital NHS Foundation Trust and University of Manchester, Manchester UK. · Weston Park Hospital, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK. · St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK. · Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK. · Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK. · Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK. · Norfolk and Norwich University Hospital, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK. · The Royal Marsden, The Royal Marsden NHS Foundation Trust, London, UK. · Bristol Haematology And Oncology Centre, University Hospital Bristol NHS Foundation Trust, Bristol, UK. · The James Cook University Hospital, South Tees Hospitals NHS Foundation Trust, Middleborough, UK. · Mount Vernon Hospital, The Hillingdon Hospitals NHS Foundation Trust, Northwood, UK. · Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. · Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK. · Conquest Hospital, East Sussex Healthcare NHS Trust, The Ridge, St Leonards-on-Sea, East Sussex, UK. · Peterborough City Hospital, Peterborough and Stamford Hospitals NHS Foundation Trust, Edith, Cavell Campus, Peterborough, UK. · Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, UK. · University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK. · Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, UK. · Royal Bournemouth Hospital, The Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK. · Glan Clwyd Hospital, University Health Board, Rhyl, Denbighshire, UK. · Abderdeen Royal Infirmary, NHS Grampian, Aberdeen, UK. · Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK. · St James University Hospital, The Leeds Teaching Hospital Trust, Beckett Street, Leeds, UK. · Liverpool Cancer Research UK Cancer Trials Unit and GCLP Facility, University of Liverpool, Liverpool, UK. Electronic address: j.p.neoptolemos@liverpool.ac.uk. ·Lancet Oncol · Pubmed #24954781.

ABSTRACT: BACKGROUND: We aimed to assess the efficacy and safety of sequential or simultaneous telomerase vaccination (GV1001) in combination with chemotherapy in patients with locally advanced or metastatic pancreatic cancer. METHODS: TeloVac was a three-group, open-label, randomised phase 3 trial. We recruited patients from 51 UK hospitals. Eligible patients were treatment naive, aged older than 18 years, with locally advanced or metastatic pancreatic ductal adenocarcinoma, and Eastern Cooperative Oncology Group performance status of 0-2. Patients were randomly assigned (1:1:1) to receive either chemotherapy alone, chemotherapy with sequential GV1001 (sequential chemoimmunotherapy), or chemotherapy with concurrent GV1001 (concurrent chemoimmunotherapy). Treatments were allocated with equal probability by means of computer-generated random permuted blocks of sizes 3 and 6 in equal proportion. Chemotherapy included six cycles of gemcitabine (1000 mg/m(2), 30 min intravenous infusion, at days 1, 8, and 15) and capecitabine (830 mg/m(2) orally twice daily for 21 days, repeated every 28 days). Sequential chemoimmunotherapy included two cycles of combination chemotherapy, then an intradermal lower abdominal injection of granulocyte-macrophage colony-stimulating factor (GM-CSF; 75 μg) and GV1001 (0·56 mg; days 1, 3, and 5, once on weeks 2-4, and six monthly thereafter). Concurrent chemoimmunotherapy included giving GV1001 from the start of chemotherapy with GM-CSF as an adjuvant. The primary endpoint was overall survival; analysis was by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN4382138. FINDINGS: The first patient was randomly assigned to treatment on March 29, 2007, and the trial was terminated on March 27, 2011. Of 1572 patients screened, 1062 were randomly assigned to treatment (358 patients were allocated to the chemotherapy group, 350 to the sequential chemoimmunotherapy group, and 354 to the concurrent chemoimmunotherapy group). We recorded 772 deaths; the 290 patients still alive were followed up for a median of 6·0 months (IQR 2·4-12·2). Median overall survival was not significantly different in the chemotherapy group than in the sequential chemoimmunotherapy group (7·9 months [95% CI 7·1-8·8] vs 6·9 months [6·4-7·6]; hazard ratio [HR] 1·19, 98·25% CI 0·97-1·48, p=0·05), or in the concurrent chemoimmunotherapy group (8·4 months [95% CI 7·3-9·7], HR 1·05, 98·25% CI 0·85-1·29, p=0·64; overall log-rank of χ(2)2df=4·3; p=0·11). The commonest grade 3-4 toxic effects were neutropenia (68 [19%] patients in the chemotherapy group, 58 [17%] patients in the sequential chemoimmunotherapy group, and 79 [22%] patients in the concurrent chemoimmunotherapy group; fatigue (27 [8%] in the chemotherapy group, 35 [10%] in the sequential chemoimmunotherapy group, and 44 [12%] in the concurrent chemoimmunotherapy group); and pain (34 [9%] patients in the chemotherapy group, 39 [11%] in the sequential chemoimmunotherapy group, and 41 [12%] in the concurrent chemoimmunotherapy group). INTERPRETATION: Adding GV1001 vaccination to chemotherapy did not improve overall survival. New strategies to enhance the immune response effect of telomerase vaccination during chemotherapy are required for clinical efficacy. FUNDING: Cancer Research UK and KAEL-GemVax.

5 Article Consensus on precision medicine for metastatic cancers: a report from the MAP conference. 2016

Swanton, C / Soria, J-C / Bardelli, A / Biankin, A / Caldas, C / Chandarlapaty, S / de Koning, L / Dive, C / Feunteun, J / Leung, S-Y / Marais, R / Mardis, E R / McGranahan, N / Middleton, G / Quezada, S A / Rodón, J / Rosenfeld, N / Sotiriou, C / André, F. ·Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London UCL Hospitals and Cancer Institute, London, UK. · Drug Development Unit, Gustave Roussy, Villejuif Department of Medical Oncology, INSERM Unit U981, Faculté de medicine Paris-Sud XI, Kremlin-Bicêtre, Villejuif, France. · Department of Oncology, University of Torino, Candiolo, Torino Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales, Australia West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow. · Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge, UK. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA. · Department of Translational Research, Institut Curie, PSL Research University, Paris, France. · Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK. · Stabilité Génétique et Oncogenèse, Université Paris-Sud, Gustave-Roussy, Villejuif, France. · Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong. · Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK. · McDonnell Genome Institute, Washington University School of Medicine, St Louis, USA. · Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London. · Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham Department of Oncology, University Hospitals Birmingham NHS Foundation Trust, Birmingham. · Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK. · Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. · Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge. · Breast Cancer Translational Research Laboratory-BCTL (ULB 290), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium. · Department of Medical Oncology, INSERM Unit U981, Faculté de medicine Paris-Sud XI, Kremlin-Bicêtre, Villejuif, France fandre@igr.fr fabrice.andre@igr.fr. ·Ann Oncol · Pubmed #27143638.

ABSTRACT: Recent advances in biotechnologies have led to the development of multiplex genomic and proteomic analyses for clinical use. Nevertheless, guidelines are currently lacking to determine which molecular assays should be implemented in metastatic cancers. The first MAP conference was dedicated to exploring the use of genomics to better select therapies in the treatment of metastatic cancers. Sixteen consensus items were covered. There was a consensus that new technologies like next-generation sequencing of tumors and ddPCR on circulating free DNA have convincing analytical validity. Further work needs to be undertaken to establish the clinical utility of liquid biopsies and the added clinical value of expanding from individual gene tests into large gene panels. Experts agreed that standardized bioinformatics methods for biological interpretation of genomic data are needed and that precision medicine trials should be stratified based on the level of evidence available for the genomic alterations identified.

6 Article Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma. 2016

Middleton, Gary / Greenhalf, William / Costello, Eithne / Shaw, Victoria / Cox, Trevor / Ghaneh, Paula / Palmer, Daniel H / Neoptolemos, John P. ·Institute of Immunology and Immunotherapy, University of Birmingham B15 2TT and University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2TH, UK. · National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK. · Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK. ·Br J Cancer · Pubmed #26931369.

ABSTRACT: BACKGROUND: Preclinical studies suggest that chemotherapy may enhance the immune response against pancreatic cancer. METHODS: The levels of granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) and the associated inflammatory marker C-reactive protein (CRP) were assessed in 38 patients receiving gemcitabine and capecitabine combination chemotherapy for advanced pancreatic cancer within the TeloVac trial. Apoptosis (M30) and total immune response (delayed-type hypersensitivity and/or T-cell response) were also assessed and levels of apoptosis induction correlated with immune response. The telomerase GV1001 vaccine was given either sequentially (n=18) or concomitantly (n=24) with the combination chemotherapy. RESULTS: There were no differences between baseline and post-treatment levels of CRP (P=0.19), IL-6 (P=0.19) and GM-CSF (P=0.71). There was a positive correlation between post-chemotherapy CRP and IL-6 levels (r=0.45, P=0.005) and between CRP with carbohydrate antigen-19-9 (CA19-9) levels at baseline (r=0.45, P=0.015) and post treatment (r=0.40, P=0.015). The change in CRP and IL-6 levels was positively correlated (r=0.40, P=0.012). Hazard ratios (95% CI) for baseline CA19-9 (1.30 (1.07-1.59), P=0.009) and CRP (1.55 (1.00-2.39), P=0.049) levels were each independently predictive of survival. The M30 mean matched differences between pre- and post-chemotherapy showed evidence of apoptosis in both the sequential (P=0.058) and concurrent (P=0.0018) chemoimmunotherapy arms. Respectively, 5 of 10 and 9 of 20 patients had a positive immune response but there was no association with apoptosis. CONCLUSIONS: Combination gemcitabine and capecitabine chemotherapy did not affect circulating levels of GM-CSF, IL-6 and CRP. Chemotherapy-induced apoptosis was not associated with the immunogenicity induced by the GV1001 vaccine in advanced pancreatic cancer.

7 Article Symptomatic Control of Neuroendocrine Tumours with Everolimus. 2015

Bainbridge, Hannah E / Larbi, Emmanuel / Middleton, Gary. ·Department of Oncology, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK. hannahbainbridge@doctors.org.uk. · Department of Oncology, St Lukes Cancer Centre, Royal Surrey County Hospital, Egerton Road, Guildford, GU2 7XX, UK. · School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, UK. ·Horm Cancer · Pubmed #26245686.

ABSTRACT: Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, increases progression-free survival in patients with advanced neuroendocrine tumours. Patients with neuroendocrine tumours and symptomatic carcinoid have inferior health-related quality of life than those without symptoms. We aimed to evaluate the effect of everolimus on symptomatic control of neuroendocrine tumours. Fifteen patients with metastatic neuroendocrine disease pre-treated with depot octreotide received combination everolimus and octreotide (midgut = 8, pancreatic = 3, other = 4). Reasons for initiation of everolimus were progressive disease (PD) by response evaluation criteria in solid tumours (n = 5), worsening syndromic symptomology (n = 5), or both (n = 5). Symptomatic and objective response and toxicity were evaluated using standard criteria. 7/10 patients who were syndromic had improvements in symptomology, with a mean duration of symptom control 13.9 months (range 1-39). All 10 symptomatic patients had non pancreatic neuroendocrine (pNET) primaries, and with everolimus, 6/10 had reduced stool frequency, 3/7 had a reduction of asthenia, and 5/7 had reduced frequency and severity of flushing. Sixty percent of patients experienced any grade toxicities, including the following: 40% grade 1/2 stomatitis, 7% grade 3/4 stomatitis, 20% grade 1/2 rash, 13% diarrhoea, and one case of pneumonitis. In this cohort of 15 patients, we demonstrated that 70% of non pNET individuals with common carcinoid syndrome symptoms resistant to depot octreotide had improvement in these symptoms on institution of everolimus, with meaningful durations of symptom control. Although this data is observational, to our knowledge, this represents the largest analysis of carcinoid syndrome control with combined everolimus and octreotide.

8 Article The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. 2014

Annels, Nicola E / Shaw, Victoria E / Gabitass, Rachel F / Billingham, Lucinda / Corrie, Pippa / Eatock, Martin / Valle, Juan / Smith, David / Wadsley, Jonathan / Cunningham, David / Pandha, Hardev / Neoptolemos, John P / Middleton, Gary. ·University of Surrey, Guildford, UK, n.annels@surrey.ac.uk. ·Cancer Immunol Immunother · Pubmed #24292263.

ABSTRACT: In pre-clinical models, the only two chemotherapy drugs which have been demonstrated to directly reduce the number of myeloid-derived suppressor cells (MDSCs) are gemcitabine and 5-fluorouracil. Here we analyze the dynamics of MDSCs, phenotyped as Lin-DR-CD11b+, in patients with advanced pancreatic cancer receiving the combination of gemcitabine and capecitabine, a 5-FU pro-drug. We found no evidence that gemcitabine and capecitabine directly reduce MDSC% in patients. Gemcitabine and capecitabine reduced MDSCs in 42% of patients (n = 19) and MDSC% fell in only 3/9 patients with above-median baseline MDSCs. In 5/8 patients with minimal tumour volume change on treatment, the MDSC% went up: increases in MDSC% in these patients appeared to correlate with sustained cancer-related inflammatory cytokine upregulation. In a separate cohort of 21 patients treated with gemcitabine and capecitabine together with concurrently administered GV1001 vaccine with adjuvant GM-CSF, the MDSC% fell in 18/21 patients and there was a significant difference in the trajectory of MDSCs between those receiving GV1001 and GM-CSF in combination with chemotherapy and those receiving chemotherapy alone. Thus, there was no evidence that the addition of low-dose adjuvant GM-CSF increased Lin-DR-CD11b+ MDSC in patients receiving combination chemoimmunotherapy. 9/21 patients developed an immune response to GV1001 and the MDSCs fell in 8 of these 9 patients, 6 of whom had above-median pre-vaccination MDSC levels. A high pre-vaccination MDSC% does not preclude the development of immunity to a tumour-associated antigen.

9 Article Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. 2011

Gabitass, Rachel F / Annels, Nicola E / Stocken, Deborah D / Pandha, Hardev A / Middleton, Gary W. ·Oncology Department, Postgraduate Medical School, University of Surrey, Surrey GU2 7WG, UK. ·Cancer Immunol Immunother · Pubmed #21644036.

ABSTRACT: We undertook a comprehensive analysis of circulating myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs) in pancreatic, esophageal and gastric cancer patients and investigated whether MDSCs are an independent prognostic factor for survival. We evaluated a series of plasma cytokines and in particular re-evaluated the Th2 cytokine interleukin-13 (IL-13). Peripheral blood was collected from 131 cancer patients (46 pancreatic, 60 esophageal and 25 gastric) and 54 healthy controls. PBMC were harvested with subsequent flow cytometric analysis of MDSC (HLADR(-) Lin1(low/-) CD33(+) CD11b(+)) and Treg (CD4(+) CD25(+) CD127(low/-) FoxP3(+)) percentages. Plasma IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p70), IL-13, IL-17, G-CSF, IFN-γ, TNF-α and VEGF levels were analyzed by the Bio-Plex cytokine assay. Plasma arginase I levels were analyzed by ELISA. MDSCs and Tregs were statistically significantly elevated in pancreatic, esophageal and gastric cancer compared with controls, and MDSC numbers correlated with Treg levels. Increasing MDSC percentage was associated with increased risk of death, and in a multivariate analysis, MDSC level was an independent prognostic factor for survival. A unit increase in MDSC percentage was associated with a 22% increased risk of death (hazard ratio 1.22, 95% confidence interval 1.06-1.41). Arginase I levels were also statistically significantly elevated in upper gastrointestinal cancer patients compared with controls. There was Th2 skewing for cytokine production in all three diseases, and importantly there were significant elevations of the pivotal Th2 cytokine interleukin-13, an increase that correlated with MDSC levels.