Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Lisiane B. Meira
Based on 2 articles published since 2009
(Why 2 articles?)
||||

Between 2009 and 2019, Lisiane Meira wrote the following 2 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Designing a bio-inspired biomimetic in vitro system for the optimization of ex vivo studies of pancreatic cancer. 2017

Totti, Stella / Vernardis, Spyros I / Meira, Lisiane / Pérez-Mancera, Pedro A / Costello, Eithne / Greenhalf, William / Palmer, Daniel / Neoptolemos, John / Mantalaris, Athanasios / Velliou, Eirini G. ·Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK. · Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK. · Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK. · Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK. · Department of Molecular and Clinical Cancer Medicine, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK; NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK. · NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool,Daulby Street, Liverpool L69 3GA, UK. · Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK. Electronic address: e.velliou@surrey.ac.uk. ·Drug Discov Today · Pubmed #28153670.

ABSTRACT: Pancreatic cancer is one of the most aggressive and lethal human malignancies. Drug therapies and radiotherapy are used for treatment as adjuvants to surgery, but outcomes remain disappointing. Advances in tissue engineering suggest that 3D cultures can reflect the in vivo tumor microenvironment and can guarantee a physiological distribution of oxygen, nutrients, and drugs, making them promising low-cost tools for therapy development. Here, we review crucial structural and environmental elements that should be considered for an accurate design of an ex vivo platform for studies of pancreatic cancer. Furthermore, we propose environmental stress response biomarkers as platform readouts for the efficient control and further prediction of the pancreatic cancer response to the environmental and treatment input.

2 Article Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1. 2013

Calvo, Jennifer A / Moroski-Erkul, Catherine A / Lake, Annabelle / Eichinger, Lindsey W / Shah, Dharini / Jhun, Iny / Limsirichai, Prajit / Bronson, Roderick T / Christiani, David C / Meira, Lisiane B / Samson, Leona D. ·Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America. ·PLoS Genet · Pubmed #23593019.

ABSTRACT: Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.