Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Andrea Mafficini
Based on 13 articles published since 2010
(Why 13 articles?)
||||

Between 2010 and 2020, Andrea Mafficini wrote the following 13 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Genomic landscape of pancreatic neuroendocrine tumours: the International Cancer Genome Consortium. 2018

Mafficini, Andrea / Scarpa, Aldo. ·ARC-Net Centre for Applied Research on CancerUniversity and Hospital Trust of Verona, Verona, Italy. · Department of Diagnostics and Public HealthSection of Pathology, University and Hospital Trust of Verona, Verona, Italy. · ARC-Net Centre for Applied Research on CancerUniversity and Hospital Trust of Verona, Verona, Italy aldo.scarpa@univr.it. ·J Endocrinol · Pubmed #29321190.

ABSTRACT: Neuroendocrine tumours (NETs) may arise throughout the body and are a highly heterogeneous, relatively rare class of neoplasms difficult to study also for the lack of disease models. Despite this, knowledge on their molecular alterations has expanded in the latest years, also building from genetic syndromes causing their onset. Pancreatic NETs (PanNETs) have been among the most studied, and research so far has outlined a series of recurring features, as inactivation of

2 Article Perineural Invasion is a Strong Prognostic Moderator in Ampulla of Vater Carcinoma: A Meta-analysis. 2019

Luchini, Claudio / Veronese, Nicola / Nottegar, Alessia / Riva, Giulio / Pilati, Camilla / Mafficini, Andrea / Stubbs, Brendon / Simbolo, Michele / Mombello, Aldo / Corbo, Vincenzo / Cheng, Liang / Yachida, Shinichi / Wood, Laura D / Lawlor, Rita T / Salvia, Roberto / Scarpa, Aldo. ·National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis," Castellana Grotte, Bari. · Department of Surgery, Section of Pathology, San Bortolo Hospital, Vicenza, Italy. · Personalized Medicine, Pharmacogenomics, Therapeutic Optimization, Paris-Descartes University, Paris, France. · ARC-Net Research Center, University of Verona, Verona, Italy. · Health Service and Population Research Department, King's College London, London, United Kingdom. · Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN. · Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. · Department of General and Pancreatic Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy. ·Pancreas · Pubmed #30451797.

ABSTRACT: OBJECTIVE: Ampulla of Vater carcinoma (AVC) has a broad spectrum of different prognoses. As such, new moderators of survival are urgently needed. We aimed at clarifying the prognostic role of perineural invasion in AVC. METHODS: Using PubMed and SCOPUS databases, we conducted the first systematic review and meta-analysis on this topic. RESULTS: Analyzing 29 articles for a total of 2379 patients, we found that the presence of perineural invasion increased the risk of all-cause mortality more than 2 times (relative risk [RR], 2.07; 95% confidence interval [CI], 1.78-2.42 [P < 0.0001]; hazard ratio [HR], 2.72; 95% CI, 1.86-3.97 [P < 0.0001]), of cancer-specific mortality more than 6 times (RR, 6.12; 95% CI, 3.25-11.54 [P < 0.0001]; HR, 6.59; 95% CI, 2.29-3.49 [P < 0.0001]), and of recurrence more than 2 times (RR, 2.63; 95% CI, 1.89-3.67 [P < 0.0001]; HR, 2.54; 95% CI, 1.24-5.21 [P = 0.01]). CONCLUSIONS: Perineural invasion is strongly associated with a poorer prognosis in AVC, influencing both survival and risk of recurrence. It should be reported in the final pathology report and should be taken into account by future oncologic staging systems, identifying a group of AVC with a more malignant biological behavior.

3 Article Molecular alterations associated with metastases of solid pseudopapillary neoplasms of the pancreas. 2019

Amato, Eliana / Mafficini, Andrea / Hirabayashi, Kenichi / Lawlor, Rita T / Fassan, Matteo / Vicentini, Caterina / Barbi, Stefano / Delfino, Pietro / Sikora, Katarzyna / Rusev, Borislav / Simbolo, Michele / Esposito, Irene / Antonello, Davide / Pea, Antonio / Sereni, Elisabetta / Ballotta, Maria / Maggino, Laura / Marchegiani, Giovanni / Ohike, Nobuyuki / Wood, Laura D / Salvia, Roberto / Klöppel, Günter / Zamboni, Giuseppe / Scarpa, Aldo / Corbo, Vincenzo. ·ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy. · Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, Tokai University School of Medicine, Isehara, Japan. · Institute of Pathology, Heinrich-Heine-University and University Hospital of Düsseldorf, Düsseldorf, Germany. · Department of Surgery, General Surgery B, University of Verona, Verona, Italy. · Section of Anatomic Pathology, Azienda Ospedaliera Rovigo, Rovigo, Italy. · Department of Pathology and Laboratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. · Department of Pathology, Technical University Munich, Munich, Germany. · Division of Pathology, Sacro Cuore-Don Calabria Hospital, Negrar, Italy. ·J Pathol · Pubmed #30306561.

ABSTRACT: Solid pseudopapillary neoplasms (SPN) of the pancreas are rare, low-grade malignant neoplasms that metastasise to the liver or peritoneum in 10-15% of cases. They almost invariably present somatic activating mutations of CTNNB1. No comprehensive molecular characterisation of metastatic disease has been conducted to date. We performed whole-exome sequencing and copy-number variation (CNV) analysis of 10 primary SPN and comparative sequencing of five matched primary/metastatic tumour specimens by high-coverage targeted sequencing of 409 genes. In addition to CTNNB1-activating mutations, we found inactivating mutations of epigenetic regulators (KDM6A, TET1, BAP1) associated with metastatic disease. Most of these alterations were shared between primary and metastatic lesions, suggesting that they occurred before dissemination. Differently from mutations, the majority of CNVs were not shared among lesions from the same patients and affected genes involved in metabolic and pro-proliferative pathways. Immunostaining of 27 SPNs showed that loss or reduction of KDM6A and BAP1 expression was significantly enriched in metastatic SPNs. Consistent with an increased transcriptional response to hypoxia in pancreatic adenocarcinomas bearing KDM6A inactivation, we showed that mutation or reduced KDM6A expression in SPNs is associated with increased expression of the HIF1α-regulated protein GLUT1 at both primary and metastatic sites. Our results suggest that BAP1 and KDM6A function is a barrier to the development of metastasis in a subset of SPNs, which might open novel avenues for the treatment of this disease. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

4 Article PD-1, PD-L1, and CD163 in pancreatic undifferentiated carcinoma with osteoclast-like giant cells: expression patterns and clinical implications. 2018

Luchini, Claudio / Cros, Jerome / Pea, Antonio / Pilati, Camilla / Veronese, Nicola / Rusev, Borislav / Capelli, Paola / Mafficini, Andrea / Nottegar, Alessia / Brosens, Lodewijk A A / Noë, Michaël / Offerhaus, G Johan A / Chianchiano, Peter / Riva, Giulio / Piccoli, Paola / Parolini, Claudia / Malleo, Giuseppe / Lawlor, Rita T / Corbo, Vincenzo / Sperandio, Nicola / Barbareschi, Mattia / Fassan, Matteo / Cheng, Liang / Wood, Laura D / Scarpa, Aldo. ·Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy. · Department of Pathology, Beaujon Hospital, 92110 Clichy, France; Paris-Diderot School of Medicine, Inflammation Research Center, 75013 Paris, France. · Department of Surgery, University and Hospital Trust of Verona, 37134 Verona, Italy. · Personalized Medicine, Pharmacogenomics, Therapeutic Optimization, Paris-Descartes University, 75006 Paris, France. · National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis," 70013, Castellana Grotte, Bari, Italy. · ARC-Net Research Center, University of Verona, 37134 Verona, Italy. · Department of Surgery, Section of Pathology, San Bortolo Hospital, 36100 Vicenza, Italy. · Department of Pathology, University Medical Center Utrecht, 3508 Utrecht, The Netherlands; Department of Pathology, Radboud University Medical Center, 6500, HB, Nijmegen, The Netherlands. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA. · Department of Pathology, University Medical Center Utrecht, 3508 Utrecht, The Netherlands. · Surgical Pathology Unit, Santa Chiara Hospital, 38122 Trento, Italy. · Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA; Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA. Electronic address: ldwood@jhmi.edu. · Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; ARC-Net Research Center, University of Verona, 37134 Verona, Italy. Electronic address: aldo.scarpa@univr.it. ·Hum Pathol · Pubmed #30031096.

ABSTRACT: Undifferentiated carcinoma with osteoclast-like giant cells (UCOGC), a variant of pancreatic ductal adenocarcinoma (PDAC), has a striking genetic similarity to PDAC but a significantly improved overall survival. We hypothesize that this difference could be due to the immune response to the tumor, and as such, we investigated the expression of PD-1, PD-L1, and CD163 in a series of UCOGC. To this aim, 27 pancreatic UCOGCs (11 pure and 16 PDAC-associated), 5 extrapancreatic tumors with osteoclast-like giant cells and 10 pancreatic anaplastic carcinomas were immunostained using antibodies against PD-1, PD-L1, and CD163. In pancreatic UCOGCs, PD-L1 was expressed in neoplastic cells of 17 (63%) of 27 cases, more often in cases with an associated PDAC (P = .04). Expression of PD-L1 was associated with poor prognosis, confirmed by multivariate analysis: patients with PD-L1-positive UCOGCs had a risk of all-cause mortality that was 3 times higher than did patients with PD-L1-negative UCOGCs (hazard ratio, 3.397; 95% confidence interval, 1.023-18.375; P = .034). PD-L1 expression on tumor cells was also associated with aberrant P53 expression (P = .035). PD-1 was expressed on rare lymphocytes in 12 UCOGCs (44.4%), mainly located at the tumor periphery. CD163 was expressed on histiocytes, with a diffuse and strong staining pattern in all UCOGCs. Extrapancreatic tumors with osteoclast-like giant cells showed very similar staining patterns for the same proteins. Anaplastic carcinomas have some similarities to UCOGCs, but PD-L1 has no prognostic roles. Our results may have important implications for immunotherapeutic strategies in UCOGCs; these tumors may also represent a model for future therapeutic approaches against PDAC.

5 Article Non-coding regulatory variations: the dark matter of pancreatic cancer genomics. 2018

Scarpa, Aldo / Mafficini, Andrea. ·ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy. · Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy. ·Gut · Pubmed #28659348.

ABSTRACT: -- No abstract --

6 Article Pancreatic undifferentiated carcinoma with osteoclast-like giant cells is genetically similar to, but clinically distinct from, conventional ductal adenocarcinoma. 2017

Luchini, Claudio / Pea, Antonio / Lionheart, Gemma / Mafficini, Andrea / Nottegar, Alessia / Veronese, Nicola / Chianchiano, Peter / Brosens, Lodewijk Aa / Noë, Michaël / Offerhaus, G Johan A / Yonescu, Raluca / Ning, Yi / Malleo, Giuseppe / Riva, Giulio / Piccoli, Paola / Cataldo, Ivana / Capelli, Paola / Zamboni, Giuseppe / Scarpa, Aldo / Wood, Laura D. ·Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. · Department of Surgery, University and Hospital Trust of Verona, Verona, Italy. · Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. · ARC-Net Research Center, University of Verona, Verona, Italy. · National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy. · Institute for Clinical Research and Education in Medicine (IREM), Padua, Italy. · Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands. · Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy. · Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. ·J Pathol · Pubmed #28722124.

ABSTRACT: Undifferentiated carcinoma of the pancreas with osteoclast-like giant cells (UCOGC) is currently considered a morphologically and clinically distinct variant of pancreatic ductal adenocarcinoma (PDAC). In this study, we report clinical and pathological features of a series of 22 UCOGCs, including the whole exome sequencing of eight UCOGCs. We observed that 60% of the UCOGCs contained a well-defined epithelial component and that patients with pure UCOGC had a significantly better prognosis than did those with an UCOGC with an associated epithelial neoplasm. The genetic alterations in UCOGC are strikingly similar to those known to drive conventional PDAC, including activating mutations in the oncogene KRAS and inactivating mutations in the tumor suppressor genes CDKN2A, TP53, and SMAD4. These results further support the classification of UCOGC as a PDAC variant and suggest that somatic mutations are not the determinants of the unique phenotype of UCOGC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

7 Article Splice variants as novel targets in pancreatic ductal adenocarcinoma. 2017

Wang, Jun / Dumartin, Laurent / Mafficini, Andrea / Ulug, Pinar / Sangaralingam, Ajanthah / Alamiry, Namaa Audi / Radon, Tomasz P / Salvia, Roberto / Lawlor, Rita T / Lemoine, Nicholas R / Scarpa, Aldo / Chelala, Claude / Crnogorac-Jurcevic, Tatjana. ·Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK. j.a.wang@qmul.ac.uk. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK. · ARC-Net Research Centre and Department of Diagnostics and Publich Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy. · Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK. t.c.jurcevic@qmul.ac.uk. ·Sci Rep · Pubmed #28592875.

ABSTRACT: Despite a wealth of genomic information, a comprehensive alternative splicing (AS) analysis of pancreatic ductal adenocarcinoma (PDAC) has not been performed yet. In the present study, we assessed whole exome-based transcriptome and AS profiles of 43 pancreas tissues using Affymetrix exon array. The AS analysis of PDAC indicated on average two AS probe-sets (ranging from 1-28) in 1,354 significantly identified protein-coding genes, with skipped exon and alternative first exon being the most frequently utilised. In addition to overrepresented extracellular matrix (ECM)-receptor interaction and focal adhesion that were also seen in transcriptome differential expression (DE) analysis, Fc gamma receptor-mediated phagocytosis and axon guidance AS genes were also highly represented. Of note, the highest numbers of AS probe-sets were found in collagen genes, which encode the characteristically abundant stroma seen in PDAC. We also describe a set of 37 'hypersensitive' genes which were frequently targeted by somatic mutations, copy number alterations, DE and AS, indicating their propensity for multidimensional regulation. We provide the most comprehensive overview of the AS landscape in PDAC with underlying changes in the spliceosomal machinery. We also collate a set of AS and DE genes encoding cell surface proteins, which present promising diagnostic and therapeutic targets in PDAC.

8 Article Fhit down-regulation is an early event in pancreatic carcinogenesis. 2017

Fassan, Matteo / Rusev, Borislav / Corbo, Vincenzo / Gasparini, Pierluigi / Luchini, Claudio / Vicentini, Caterina / Mafficini, Andrea / Paiella, Salvatore / Salvia, Roberto / Cataldo, Ivana / Scarpa, Aldo / Huebner, Kay. ·ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy. matteo.fassan@unipd.it. · Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Via Gabelli 61, 35121, Padua, Italy. matteo.fassan@unipd.it. · ARC-NET Research Centre, Department of Diagnostics and Public Health, University of Verona, Verona, Italy. · Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA. · Department of Diagnostics and Public Health, Surgical Pathology Unit, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, Santa Chiara Hospital, Trento, Italy. · Department of Surgery, Unit of General Surgery B, University and Hospital Trust of Verona, Verona, Italy. ·Virchows Arch · Pubmed #28289900.

ABSTRACT: Aberrant Fhit expression characterizes a large proportion of primary pancreatic ductal adenocarcinomas (PDACs), but fragmentary information is available on Fhit expression during the phenotypic changes of pancreatic ductal epithelium during multistep transformation. We assessed Fhit expression by immunohistochemistry in two different multistep pancreatic carcinogenic processes: pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasia (IPMN). We considered 105 surgically treated PDACs/IPMNs and selected 30 samples of non-neoplastic pancreatic parenchyma, 50 PanIN lesions, 30 IPMNs, 15 IPMNs with associated invasive carcinoma, and 60 adenocarcinomas. Normal pancreatic ducts and surrounding acinar cells consistently showed moderate to strong Fhit immunoreactivity. Significant down-regulation of Fhit expression was observed in association with increasing severity of dysplastia/neoplastia in both carcinogenic processes. This was further confirmed by studying multiple lesions obtained from the same surgical specimen. Of 60 PDACs, only 14 showed Fhit expression comparable to normal pancreatic ductal epithelium, while the remainder (77%) showed clearly negative or reduced Fhit expression. This study demonstrates that Fhit down-regulation is an early event in both multistep carcinogenic processes leading to PDAC.

9 Article Whole-genome landscape of pancreatic neuroendocrine tumours. 2017

Scarpa, Aldo / Chang, David K / Nones, Katia / Corbo, Vincenzo / Patch, Ann-Marie / Bailey, Peter / Lawlor, Rita T / Johns, Amber L / Miller, David K / Mafficini, Andrea / Rusev, Borislav / Scardoni, Maria / Antonello, Davide / Barbi, Stefano / Sikora, Katarzyna O / Cingarlini, Sara / Vicentini, Caterina / McKay, Skye / Quinn, Michael C J / Bruxner, Timothy J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / McLean, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Wilson, Peter J / Anderson, Matthew J / Fink, J Lynn / Newell, Felicity / Waddell, Nick / Holmes, Oliver / Kazakoff, Stephen H / Leonard, Conrad / Wood, Scott / Xu, Qinying / Nagaraj, Shivashankar Hiriyur / Amato, Eliana / Dalai, Irene / Bersani, Samantha / Cataldo, Ivana / Dei Tos, Angelo P / Capelli, Paola / Davì, Maria Vittoria / Landoni, Luca / Malpaga, Anna / Miotto, Marco / Whitehall, Vicki L J / Leggett, Barbara A / Harris, Janelle L / Harris, Jonathan / Jones, Marc D / Humphris, Jeremy / Chantrill, Lorraine A / Chin, Venessa / Nagrial, Adnan M / Pajic, Marina / Scarlett, Christopher J / Pinho, Andreia / Rooman, Ilse / Toon, Christopher / Wu, Jianmin / Pinese, Mark / Cowley, Mark / Barbour, Andrew / Mawson, Amanda / Humphrey, Emily S / Colvin, Emily K / Chou, Angela / Lovell, Jessica A / Jamieson, Nigel B / Duthie, Fraser / Gingras, Marie-Claude / Fisher, William E / Dagg, Rebecca A / Lau, Loretta M S / Lee, Michael / Pickett, Hilda A / Reddel, Roger R / Samra, Jaswinder S / Kench, James G / Merrett, Neil D / Epari, Krishna / Nguyen, Nam Q / Zeps, Nikolajs / Falconi, Massimo / Simbolo, Michele / Butturini, Giovanni / Van Buren, George / Partelli, Stefano / Fassan, Matteo / Anonymous6880896 / Khanna, Kum Kum / Gill, Anthony J / Wheeler, David A / Gibbs, Richard A / Musgrove, Elizabeth A / Bassi, Claudio / Tortora, Giampaolo / Pederzoli, Paolo / Pearson, John V / Waddell, Nicola / Biankin, Andrew V / Grimmond, Sean M. ·ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. · QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · Medical Oncology, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, General Hospital of Treviso, Department of Medicine, University of Padua, Italy. · Department of Medicine, Section of Endocrinology, University and Hospital Trust of Verona, Verona, Italy. · The University of Queensland, School of Medicine, Brisbane 4006, Australia. · Pathology Queensland, Brisbane 4006, Australia. · Royal Brisbane and Women's Hospital, Department of Gastroenterology and Hepatology, Brisbane 4006, Australia. · Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. · School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · Department of Anatomical Pathology. St Vincent's Hospital, Sydney, New South Wales 2010, Australia. · Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. · Department of Pathology, Queen Elizabeth University Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. · Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA. · Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia. · Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. · University of Sydney. Sydney, New South Wales 2006, Australia. · Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · School of Medicine, Western Sydney University, Penrith, New South Wales 2175, Australia. · Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia 6009, Australia. · St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. · Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. · University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, 3010, Victoria, Australia. ·Nature · Pubmed #28199314.

ABSTRACT: The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

10 Article A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. 2015

Sadanandam, Anguraj / Wullschleger, Stephan / Lyssiotis, Costas A / Grötzinger, Carsten / Barbi, Stefano / Bersani, Samantha / Körner, Jan / Wafy, Ismael / Mafficini, Andrea / Lawlor, Rita T / Simbolo, Michele / Asara, John M / Bläker, Hendrik / Cantley, Lewis C / Wiedenmann, Bertram / Scarpa, Aldo / Hanahan, Douglas. ·Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland. Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. Division of Molecular Pathology, Institute of Cancer Research (ICR), London, United Kingdom. anguraj.sadanandam@icr.ac.uk douglas.hanahan@epfl.ch aldo.scarpa@univr.it. · Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. · Meyer Cancer Center, Weill Cornell Medical College, New York, New York. · Department of Hepatology and Gastroenterology, Charite, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany. · ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. · Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts. · Institut für Pathologie, Charite, Campus Virchow-Klinikum, University Medicine, Berlin, Germany. · ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy. anguraj.sadanandam@icr.ac.uk douglas.hanahan@epfl.ch aldo.scarpa@univr.it. · Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. anguraj.sadanandam@icr.ac.uk douglas.hanahan@epfl.ch aldo.scarpa@univr.it. ·Cancer Discov · Pubmed #26446169.

ABSTRACT: SIGNIFICANCE: This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy.

11 Article Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. 2014

Amato, Eliana / Molin, Marco Dal / Mafficini, Andrea / Yu, Jun / Malleo, Giuseppe / Rusev, Borislav / Fassan, Matteo / Antonello, Davide / Sadakari, Yoshihiko / Castelli, Paola / Zamboni, Giuseppe / Maitra, Anirban / Salvia, Roberto / Hruban, Ralph H / Bassi, Claudio / Capelli, Paola / Lawlor, Rita T / Goggins, Michael / Scarpa, Aldo. ·ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Italy. ·J Pathol · Pubmed #24604757.

ABSTRACT: Intraductal neoplasms are important precursors to invasive pancreatic cancer and provide an opportunity to detect and treat pancreatic neoplasia before an invasive carcinoma develops. The diagnostic evaluation of these lesions is challenging, as diagnostic imaging and cytological sampling do not provide accurate information on lesion classification, the grade of dysplasia or the presence of invasion. Moreover, the molecular driver gene mutations of these precursor lesions have yet to be fully characterized. Fifty-two intraductal papillary neoplasms, including 48 intraductal papillary mucinous neoplasms (IPMNs) and four intraductal tubulopapillary neoplasms (ITPNs), were subjected to the mutation assessment in 51 cancer-associated genes, using ion torrent semiconductor-based next-generation sequencing. P16 and Smad4 immunohistochemistry was performed on 34 IPMNs and 17 IPMN-associated carcinomas. At least one somatic mutation was observed in 46/48 (96%) IPMNs; 29 (60%) had multiple gene alterations. GNAS and/or KRAS mutations were found in 44/48 (92%) of IPMNs. GNAS was mutated in 38/48 (79%) IPMNs, KRAS in 24/48 (50%) and these mutations coexisted in 18/48 (37.5%) of IPMNs. RNF43 was the third most commonly mutated gene and was always associated with GNAS and/or KRAS mutations, as were virtually all the low-frequency mutations found in other genes. Mutations in TP53 and BRAF genes (10% and 6%) were only observed in high-grade IPMNs. P16 was lost in 7/34 IPMNs and 9/17 IPMN-associated carcinomas; Smad4 was lost in 1/34 IPMNs and 5/17 IPMN-associated carcinomas. In contrast to IPMNs, only one of four ITPNs had detectable driver gene (GNAS and NRAS) mutations. Deep sequencing DNA from seven cyst fluid aspirates identified 10 of the 13 mutations detected in their associated IPMN. Using next-generation sequencing to detect cyst fluid mutations has the potential to improve the diagnostic and prognostic stratification of pancreatic cystic neoplasms.

12 Article ICAT is a novel Ptf1a interactor that regulates pancreatic acinar differentiation and displays altered expression in tumours. 2013

Campos, M Luisa / Sánchez-Arévalo Lobo, Víctor J / Rodolosse, Annie / Gottardi, Cara J / Mafficini, Andrea / Beghelli, Stefania / Scardoni, Maria / Bassi, Claudio / Scarpa, Aldo / Real, Francisco X. ·Grupo de Carcinogénesis Epitelial, Programa de Patología Molecular, CNIO-Spanish National Cancer Research Center, 28029 Madrid, Spain. ·Biochem J · Pubmed #23339455.

ABSTRACT: The PTF1 (pancreas transcription factor 1) complex is a master regulator of differentiation of acinar cells, responsible for the production of digestive enzymes. In the adult pancreas, PTF1 contains two pancreas-restricted transcription factors: Ptf1a and Rbpjl. PTF1 recruits P/CAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] which acetylates Ptf1a and enhances its transcriptional activity. Using yeast two-hybrid screening, we identified ICAT (inhibitor of β-catenin and Tcf4) as a novel Ptf1a interactor. ICAT regulates the Wnt pathway and cell proliferation. We validated and mapped the ICAT-Ptf1a interaction in vitro and in vivo. We demonstrated that, following its overexpression in acinar tumour cells, ICAT regulates negatively PTF1 activity in vitro and in vivo. This effect was independent of β-catenin and was mediated by direct binding to Ptf1a and displacement of P/CAF. ICAT also modulated the expression of Pdx1 and Sox9 in acinar tumour cells. ICAT overexpression reduced the interaction of Ptf1a with Rbpjl and P/CAF and impaired Ptf1a acetylation by P/CAF. ICAT did not affect the subcellular localization of Ptf1a. In human pancreas, ICAT displayed a cell-type-specific distribution; in acinar and endocrine cells, it was nuclear, whereas in ductal cells, it was cytoplasmic. In ductal adenocarcinomas, ICAT displayed mainly a nuclear or mixed distribution and the former was an independent marker of survival. ICAT regulates acinar differentiation and it does so through a novel Wnt pathway-independent mechanism that may contribute to pancreatic disease.

13 Article Elevated urinary levels of urokinase-type plasminogen activator receptor (uPAR) in pancreatic ductal adenocarcinoma identify a clinically high-risk group. 2011

Sorio, Claudio / Mafficini, Andrea / Furlan, Federico / Barbi, Stefano / Bonora, Antonio / Brocco, Giorgio / Blasi, Francesco / Talamini, Giorgio / Bassi, Claudio / Scarpa, Aldo. ·Department of Pathology and Diagnostics, University of Verona, Italy. ·BMC Cancer · Pubmed #21999221.

ABSTRACT: BACKGROUND: The urokinase plasminogen activator receptor is highly expressed and its gene is amplified in about 50% of pancreatic ductal adenocarcinomas; this last feature is associated with worse prognosis. It is unknown whether the level of its soluble form (suPAR) in urine may be a diagnostic-prognostic marker in these patients. METHODS: The urinary level of suPAR was measured in 146 patients, 94 pancreatic ductal adenocarcinoma and 52 chronic pancreatitis. Urine from 104 healthy subjects with similar age and gender distribution served as controls. suPAR levels were normalized with creatinine levels (suPAR/creatinine, ng/mg) to remove urine dilution effect. RESULTS: Urinary suPAR/creatinine values of pancreatic ductal adenocarcinoma patients were significantly higher (median 9.8; 25th-75th percentiles 5.3-20.7) than those of either healthy donors (median 0; 0-0.5) or chronic pancreatitis patients (median 2.7; 0.9-4.7). The distribution of values among cancer patients was widespread and asymmetric, 53% subjects having values beyond the 95th percentile of healthy donors. The values of suPAR/creatinine did not correlate with tumour stage, Ca19-9 or CEA levels. Higher values correlated with poor prognosis among non-resected patients at univariate analysis; multivariate Cox regression identified high urinary suPAR/creatinine as an independent predictor of poor survival among all cancer patients (odds ratio 2.10, p = 0.0023), together with tumour stage (stage III odds ratio 2.65, p = 0.0017; stage IV odds ratio 4.61, p < 0.0001) and female gender (odds ratio 1.85, p = 0.01). CONCLUSIONS: A high urinary suPAR/creatinine ratio represents a useful marker for the identification of a subset of patients with poorer outcome.