Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Leila Luján-Barroso
Based on 6 articles published since 2010
(Why 6 articles?)
||||

Between 2010 and 2020, L. Lujan-Barroso wrote the following 6 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition. 2020

Obón-Santacana, Mireia / Luján-Barroso, Leila / Freisling, Heinz / Naudin, Sabine / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Rebours, Vinciane / Kühn, Tilman / Katzke, Verena / Boeing, Heiner / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Lasheras, Cristina / Rodríguez-Barranco, Miguel / Amiano, Pilar / Santiuste, Carmen / Ardanaz, Eva / Khaw, Kay-Thee / Wareham, Nicholas J / Schmidt, Julie A / Aune, Dagfinn / Trichopoulou, Antonia / Thriskos, Paschalis / Peppa, Eleni / Masala, Giovanna / Grioni, Sara / Tumino, Rosario / Panico, Salvatore / Bueno-de-Mesquita, Bas / Sciannameo, Veronica / Vermeulen, Roel / Sonestedt, Emily / Sund, Malin / Weiderpass, Elisabete / Skeie, Guri / González, Carlos A / Riboli, Elio / Duell, Eric J. ·Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Department of Nursing of Public Health, Mental Health and Maternity and Child Health School of Nursing, Universitat de Barcelona, Barcelona, Spain. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France. · Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, DHU Unity, AP-HP, Clichy, and Paris-Diderot University, Paris, France. · Inserm UMR1149, DHU Unity, and Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Reserach Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Hellenic Health Foundation, Athens, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M. P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Unit of Epidemiology, Regional Health Service ASL TO3, Turin, Italy. · Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands. · Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · International Agency for Research on Cancer, Lyon, France. · Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. ·Int J Cancer · Pubmed #31107546.

ABSTRACT: Four epidemiologic studies have assessed the association between nut intake and pancreatic cancer risk with contradictory results. The present study aims to investigate the relation between nut intake (including seeds) and pancreatic ductal adenocarcinoma (PDAC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Cox proportional hazards models were used to estimate hazards ratio (HR) and 95% confidence intervals (95% CI) for nut intake and PDAC risk. Information on intake of nuts was obtained from the EPIC country-specific dietary questionnaires. After a mean follow-up of 14 years, 476,160 participants were eligible for the present study and included 1,283 PDAC cases. No association was observed between consumption of nuts and PDAC risk (highest intake vs nonconsumers: HR, 0.89; 95% CI, 0.72-1.10; p-trend = 0.70). Furthermore, no evidence for effect-measure modification was observed when different subgroups were analyzed. Overall, in EPIC, the highest intake of nuts was not statistically significantly associated with PDAC risk.

2 Article Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. 2017

Duell, Eric J / Lujan-Barroso, Leila / Sala, Núria / Deitz McElyea, Samantha / Overvad, Kim / Tjonneland, Anne / Olsen, Anja / Weiderpass, Elisabete / Busund, Lill-Tove / Moi, Line / Muller, David / Vineis, Paolo / Aune, Dagfinn / Matullo, Giuseppe / Naccarati, Alessio / Panico, Salvatore / Tagliabue, Giovanna / Tumino, Rosario / Palli, Domenico / Kaaks, Rudolf / Katzke, Verena A / Boeing, Heiner / Bueno-de-Mesquita, H B As / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Kotanidou, Anastasia / Travis, Ruth C / Wareham, Nick / Khaw, Kay-Tee / Ramon Quiros, Jose / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, María-Dolores / Ardanaz, Eva / Severi, Gianluca / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Brennan, Paul / Gunter, Marc / Scelo, Ghislaine / Cote, Greg / Sherman, Stuart / Korc, Murray. ·Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway. · Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. · School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom. · Human Genetics Foundation (HuGeF), Turin, Italy. · Department of Medical Sciences, University of Turin, Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P, Arezzo" Hospital, ASP, Ragusa, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany. · Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece. · Department of Epidemiology, Harvard School of Public Health, Boston, MA. · Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Public Health Directorate, Asturias, Spain. · Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada. · CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Basque Regional Health Department, San Sebatian, Spain. · Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, France. · Beaujon Hospital, Pancreatology Unit, Clichy, France. · INSERM, University Paris, France. · International Agency for Research on Cancer (IARC), Lyon, France. · Medical University of South Carolina, Charleston, SC. · Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN. · Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN. ·Int J Cancer · Pubmed #28542740.

ABSTRACT: Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).

3 Article Menstrual and Reproductive Factors, Hormone Use, and Risk of Pancreatic Cancer: Analysis From the International Pancreatic Cancer Case-Control Consortium (PanC4). 2016

Lujan-Barroso, Leila / Zhang, Wei / Olson, Sara H / Gao, Yu-Tang / Yu, Herbert / Baghurst, Peter A / Bracci, Paige M / Bueno-de-Mesquita, H Bas / Foretová, Lenka / Gallinger, Steven / Holcatova, Ivana / Janout, Vladimír / Ji, Bu-Tian / Kurtz, Robert C / La Vecchia, Carlo / Lagiou, Pagona / Li, Donghui / Miller, Anthony B / Serraino, Diego / Zatonski, Witold / Risch, Harvey A / Duell, Eric J. ·From the *Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; †Department of Epidemiology, Shanghai Cancer Institute and Jiao Tong University, Shanghai, China; ‡Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY; §Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI; ∥Public Health, Women's and Children's Hospital, Adelaide, SA, Australia; ¶University of California, San Francisco, San Francisco, CA; #National Institute for Public Health and the Environment (RIVM), Bilthoven; **Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands; ††Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; ‡‡Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; §§Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Institute and MF MU, Brno, Czech Republic; ∥∥University Health Network, Department of Surgery, University of Toronto, Toronto, Canada; ¶¶Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague; ##Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic; ***National Cancer Institute, Bethesda, MD; †††Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ‡‡‡Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; §§§Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Greece; ∥∥∥Department of Epidemiology, Harvard School of Public Health, Boston, MA; ¶¶¶M.D. Anderson Cancer Center, University of Texas, Houston, TX; ###Dalla Lana School of Public Health, University of Toronto, Toronto, Canada; ****Unit of Epidemiology and Biostatistics, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; ††††Cancer Center and Institute of Oncology, Warsaw, Poland; and ‡‡‡‡Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT. ·Pancreas · Pubmed #27088489.

ABSTRACT: OBJECTIVES: We aimed to evaluate the relation between menstrual and reproductive factors, exogenous hormones, and risk of pancreatic cancer (PC). METHODS: Eleven case-control studies within the International Pancreatic Cancer Case-control Consortium took part in the present study, including in total 2838 case and 4748 control women. Pooled estimates of odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using a 2-step logistic regression model and adjusting for relevant covariates. RESULTS: An inverse OR was observed in women who reported having had hysterectomy (ORyesvs.no, 0.78; 95% CI, 0.67-0.91), remaining significant in postmenopausal women and never-smoking women, adjusted for potential PC confounders. A mutually adjusted model with the joint effect for hormone replacement therapy (HRT) and hysterectomy showed significant inverse associations with PC in women who reported having had hysterectomy with HRT use (OR, 0.64; 95% CI, 0.48-0.84). CONCLUSIONS: Our large pooled analysis suggests that women who have had a hysterectomy may have reduced risk of PC. However, we cannot rule out that the reduced risk could be due to factors or indications for having had a hysterectomy. Further investigation of risk according to HRT use and reason for hysterectomy may be necessary.

4 Article Dietary intake of acrylamide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. 2013

Obón-Santacana, M / Slimani, N / Lujan-Barroso, L / Travier, N / Hallmans, G / Freisling, H / Ferrari, P / Boutron-Ruault, M C / Racine, A / Clavel, F / Saieva, C / Pala, V / Tumino, R / Mattiello, A / Vineis, P / Argüelles, M / Ardanaz, E / Amiano, P / Navarro, C / Sánchez, M J / Molina Montes, E / Key, T / Khaw, K-T / Wareham, N / Peeters, P H / Trichopoulou, A / Bamia, C / Trichopoulos, D / Boeing, H / Kaaks, R / Katzke, V / Ye, W / Sund, M / Ericson, U / Wirfält, E / Overvad, K / Tjønneland, A / Olsen, A / Skeie, G / Åsli, L A / Weiderpass, E / Riboli, E / Bueno-de-Mesquita, H B / Duell, E J. ·Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. ·Ann Oncol · Pubmed #23857962.

ABSTRACT: BACKGROUND: In 1994, acrylamide (AA) was classified as a probable human carcinogen by the International Agency for Research on Cancer. In 2002, AA was discovered at relatively high concentrations in some starchy, plant-based foods cooked at high temperatures. PATIENTS AND METHODS: A prospective analysis was conducted to evaluate the association between the dietary intake of AA and ductal adenocarcinoma of the exocrine pancreatic cancer (PC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort using Cox regression modeling. EPIC includes >500,000 men and women aged 35-75 at enrollment from 10 European countries. AA intake was estimated for each participant by combining questionnaire-based food consumption data with a harmonized AA database derived from the EU monitoring database of AA levels in foods, and evaluated in quintiles and continuously. RESULTS: After a mean follow-up of 11 years, 865 first incident adenocarcinomas of the exocrine pancreas were observed and included in the present analysis. At baseline, the mean dietary AA intake in EPIC was 26.22 µg/day. No overall association was found between continuous or quintiles of dietary AA intake and PC risk in EPIC (HR:0.95, 95%CI:0.89-1.01 per 10 µg/day). There was no effect measure modification by smoking status, sex, diabetes, alcohol intake or geographic region. However, there was an inverse association (HR: 0.73, 95% CI: 0.61-0.88 per 10 µg/day) between AA intake and PC risk in obese persons as defined using the body mass index (BMI, ≥ 30 kg/m(2)), but not when body fatness was defined using waist and hip circumference or their ratio. CONCLUSIONS: Dietary intake of AA was not associated with an increased risk of PC in the EPIC cohort.

5 Article Menstrual and reproductive factors in women, genetic variation in CYP17A1, and pancreatic cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. 2013

Duell, Eric J / Travier, Noémie / Lujan-Barroso, Leila / Dossus, Laure / Boutron-Ruault, Marie-Christine / Clavel-Chapelon, Françoise / Tumino, Rosario / Masala, Giovanna / Krogh, Vittorio / Panico, Salvatore / Ricceri, Fulvio / Redondo, Maria Luisa / Dorronsoro, Miren / Molina-Montes, Esther / Huerta, José M / Barricarte, Aurelio / Khaw, Kay-Tee / Wareham, Nick J / Allen, Naomi E / Travis, Ruth / Siersema, Peter D / Peeters, Petra H M / Trichopoulou, Antonia / Fragogeorgi, Eirini / Oikonomou, Eleni / Boeing, Heiner / Schuetze, Madlen / Canzian, Federico / Lukanova, Annekatrin / Tjønneland, Anne / Roswall, Nina / Overvad, Kim / Weiderpass, Elisabete / Gram, Inger Torhild / Lund, Eiliv / Lindkvist, Björn / Johansen, Dorthe / Ye, Weimin / Sund, Malin / Fedirko, Veronika / Jenab, Mazda / Michaud, Dominique S / Riboli, Elio / Bueno-de-Mesquita, H Bas. ·Unit of Nutrition, Environment and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. eduell@iconcologia.net ·Int J Cancer · Pubmed #23015357.

ABSTRACT: Menstrual and reproductive factors and exogenous hormone use have been investigated as pancreatic cancer risk factors in case-control and cohort studies, but results have been inconsistent. We conducted a prospective examination of menstrual and reproductive factors, exogenous hormone use and pancreatic cancer risk (based on 304 cases) in 328,610 women from the EPIC cohort. Then, in a case-control study nested within the EPIC cohort, we examined 12 single nucleotide polymorphisms (SNPs) in CYP17A1 (an essential gene in sex steroid metabolism) for association with pancreatic cancer in women and men (324 cases and 353 controls). Of all factors analyzed, only younger age at menarche (<12 vs. 13 years) was moderately associated with an increased risk of pancreatic cancer in the full cohort; however, this result was marginally significant (HR = 1.44; 95% CI = 0.99-2.10). CYP17A1 rs619824 was associated with HRT use (p value = 0.037) in control women; however, none of the SNPs alone, in combination, or as haplotypes were associated with pancreatic cancer risk. In conclusion, with the possible exception of an early age of menarche, none of the menstrual and reproductive factors, and none of the 12 common genetic variants we evaluated at the CYP17A1 locus makes a substantial contribution to pancreatic cancer susceptibility in the EPIC cohort.

6 Article Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2012

Molina-Montes, Esther / Wark, Petra A / Sánchez, María-José / Norat, Teresa / Jakszyn, Paula / Luján-Barroso, Leila / Michaud, Dominique S / Crowe, Francesca / Allen, Naomi / Khaw, Kay-Tee / Wareham, Nicholas / Trichopoulou, Antonia / Adarakis, George / Katarachia, Helen / Skeie, Guri / Henningsen, Maria / Broderstad, Ann Ragnhild / Berrino, Franco / Tumino, Rosario / Palli, Domenico / Mattiello, Amalia / Vineis, Paolo / Amiano, Pilar / Barricarte, Aurelio / Huerta, José-María / Duell, Eric J / Quirós, José-Ramón / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Overvad, Kim / Tjønneland, Anne / Roswall, Nina / Li, Kuanrong / Grote, Verena A / Steffen, Annika / Boeing, Heiner / Racine, Antoine / Boutron-Ruault, Marie-Christine / Carbonnel, Franck / Peeters, Petra H M / Siersema, Peter D / Fedirko, Veronika / Jenab, Mazda / Riboli, Elio / Bueno-de-Mesquita, Bas. ·Andalusian School of Public Health. Granada Cancer Registry, Spain. ·Int J Cancer · Pubmed #22438075.

ABSTRACT: Several studies support a protective effect of dietary magnesium against type 2 diabetes, but a harmful effect for iron. As diabetes has been linked to pancreatic cancer, intake of these nutrients may be also associated with this cancer. We examined the association between dietary intake of magnesium, total iron and heme-iron and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. In total, 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After an average follow-up of 11.3 years, 396 men and 469 women developed exocrine pancreatic cancer. Hazard ratios and 95% confidence intervals (CIs) were obtained using Cox regression stratified by age and center, and adjusted for energy intake, smoking status, height, weight, and self-reported diabetes status. Neither intake of magnesium, total iron nor heme-iron was associated with pancreatic cancer risk. In stratified analyses, a borderline inverse association was observed among overweight men (body mass index, ≥ 25 kg/m(2) ) with magnesium (HR(per 100 mg/day increase) = 0.79, 95% CI = 0.63-1.01) although this was less apparent using calibrated intake. In female smokers, a higher intake of heme-iron was associated with a higher pancreatic cancer risk (HR (per 1 mg/day increase) = 1.38, 95% CI = 1.10-1.74). After calibration, this risk increased significantly to 2.5-fold (95% CI = 1.22-5.28). Overall, dietary magnesium, total iron and heme-iron were not associated with pancreatic cancer risk during the follow-up period. Our observation that heme-iron was associated with increased pancreatic cancer risk in female smokers warrants replication in additional study populations.