Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Natasha Leighl
Based on 2 articles published since 2009
(Why 2 articles?)
||||

Between 2009 and 2019, Natasha Leighl wrote the following 2 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Sensitive tumour detection and classification using plasma cell-free DNA methylomes. 2018

Shen, Shu Yi / Singhania, Rajat / Fehringer, Gordon / Chakravarthy, Ankur / Roehrl, Michael H A / Chadwick, Dianne / Zuzarte, Philip C / Borgida, Ayelet / Wang, Ting Ting / Li, Tiantian / Kis, Olena / Zhao, Zhen / Spreafico, Anna / Medina, Tiago da Silva / Wang, Yadon / Roulois, David / Ettayebi, Ilias / Chen, Zhuo / Chow, Signy / Murphy, Tracy / Arruda, Andrea / O'Kane, Grainne M / Liu, Jessica / Mansour, Mark / McPherson, John D / O'Brien, Catherine / Leighl, Natasha / Bedard, Philippe L / Fleshner, Neil / Liu, Geoffrey / Minden, Mark D / Gallinger, Steven / Goldenberg, Anna / Pugh, Trevor J / Hoffman, Michael M / Bratman, Scott V / Hung, Rayjean J / De Carvalho, Daniel D. ·Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. · Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada. · Memorial Sloan Kettering Cancer Center, New York, NY, USA. · Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. · Genome Technologies, Ontario Institute for Cancer Research, Toronto, Ontario, Canada. · UMR_S 1236, Univ Rennes 1, Inserm, Etablissement Fran├žais du sang Bretagne, Rennes, France. · Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA. · Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · Fred Litwin Centre for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada. · Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. · Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada. rayjean.hung@lunenfeld.ca. · Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. rayjean.hung@lunenfeld.ca. · Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. ddecarv@uhnresearch.ca. · Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. ddecarv@uhnresearch.ca. ·Nature · Pubmed #30429608.

ABSTRACT: The use of liquid biopsies for cancer detection and management is rapidly gaining prominence

2 Article Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy. 2014

de Haas, Sanne / Delmar, Paul / Bansal, Aruna T / Moisse, Matthieu / Miles, David W / Leighl, Natasha / Escudier, Bernard / Van Cutsem, Eric / Carmeliet, Peter / Scherer, Stefan J / Pallaud, Celine / Lambrechts, Diether. ·F. Hoffmann-La Roche, Basel, Switzerland. ·Angiogenesis · Pubmed #25012543.

ABSTRACT: BACKGROUND: Despite extensive translational research, no validated biomarkers predictive of bevacizumab treatment outcome have been identified. METHODS: We performed a meta-analysis of individual patient data from six randomized phase III trials in colorectal, pancreatic, lung, renal, breast, and gastric cancer to explore the potential relationships between 195 common genetic variants in the vascular endothelial growth factor (VEGF) pathway and bevacizumab treatment outcome. RESULTS: The analysis included 1,402 patients (716 bevacizumab-treated and 686 placebo-treated). Twenty variants were associated (P < 0.05) with progression-free survival (PFS) in bevacizumab-treated patients. Of these, 4 variants in EPAS1 survived correction for multiple testing (q < 0.05). Genotype-by-treatment interaction tests revealed that, across these 20 variants, 3 variants in VEGF-C (rs12510099), EPAS1 (rs4953344), and IL8RA (rs2234671) were potentially predictive (P < 0.05), but not resistant to multiple testing (q > 0.05). A weak genotype-by-treatment interaction effect was also observed for rs699946 in VEGF-A, whereas Bayesian genewise analysis revealed that genetic variability in VHL was associated with PFS in the bevacizumab arm (q < 0.05). Variants in VEGF-A, EPAS1, and VHL were located in expression quantitative loci derived from lymphoblastoid cell lines, indicating that they affect the expression levels of their respective gene. CONCLUSIONS: This large genetic analysis suggests that variants in VEGF-A, EPAS1, IL8RA, VHL, and VEGF-C have potential value in predicting bevacizumab treatment outcome across tumor types. Although these associations did not survive correction for multiple testing in a genotype-by-interaction analysis, they are among the strongest predictive effects reported to date for genetic variants and bevacizumab efficacy.