Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Amber L. Johns
Based on 22 articles published since 2010
(Why 22 articles?)
||||

Between 2010 and 2020, A. Johns wrote the following 22 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Personalising pancreas cancer treatment: When tissue is the issue. 2014

Sjoquist, Katrin M / Chin, Venessa T / Chantrill, Lorraine A / O'Connor, Chelsie / Hemmings, Chris / Chang, David K / Chou, Angela / Pajic, Marina / Johns, Amber L / Nagrial, Adnan M / Biankin, Andrew V / Yip, Desmond. ·Katrin M Sjoquist, NHMRC Clinical Trials Centre, University of Sydney, Sydney NSW 1450, Australia. ·World J Gastroenterol · Pubmed #24976722.

ABSTRACT: The treatment of advanced pancreatic cancer has not moved much beyond single agent gemcitabine until recently when protocols such as FOLFIRINOX (fluorouracil, leucovorin, irinotecan and oxaliplatin) and nab-paclitaxel-gemcitabine have demonstrated some improved outcomes. Advances in technology especially in massively parallel genome sequencing has progressed our understanding of the biology of pancreatic cancer especially the candidate signalling pathways that are involved in tumourogenesis and disease course. This has allowed identification of potentially actionable mutations that may be targeted by new biological agents. The heterogeneity of pancreatic cancer makes tumour tissue collection important with the aim of being able to personalise therapies for the individual as opposed to a one size fits all approach to treatment of the condition. This paper reviews the developments in this area of translational research and the ongoing clinical studies that will attempt to move this into the everyday oncology practice.

2 Review Understanding pancreatic cancer genomes. 2013

Cowley, Mark J / Chang, David K / Pajic, Marina / Johns, Amber L / Waddell, Nicola / Grimmond, Sean M / Biankin, Andrew V. ·The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, Australia; Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia. ·J Hepatobiliary Pancreat Sci · Pubmed #23660961.

ABSTRACT: Pancreatic cancer is the fourth leading cause of cancer death in our society, with a mortality that virtually parallels its incidence, a median survival of <12 months even with maximal therapy, and a 5-year survival rate of <5 %. The diversity of clinical outcomes and the molecular heterogeneity of histopathologically similar cancer types, incomplete knowledge of the genomic aberrations that drive carcinogenesis and the lack of therapeutics that specifically target most known genomic aberrations necessitates large-scale detailed analysis of cancer genomes to identify novel potential therapeutic strategies. As part of the International Cancer Genome Consortium (ICGC), the Australian Pancreatic Cancer Genome Initiative (APGI) used exomic sequencing and copy number analysis to define genomic aberrations that characterize a large, clinically focused, prospectively accrued cohort of patients with pancreatic cancer. The cohort consisted of early (clinical stages I and II) non-pre-treated patients with pancreatic ductal adenocarcinoma who underwent operative resection with curative intent. We devised approaches to adjust for low epithelial content in primary tumours and to define the genomic landscape of pancreatic cancer to identify novel candidate driver genes and mechanisms. We aim to develop stratified, molecular phenotype-guided therapeutic strategies using existing therapeutics that are either rescued, repurposed, in development, or are known to be effective in an undefined subgroup of PC patients. These are then tested in primary patient-derived xenografts and cell lines from the above deeply characterized cohort. In addition, we return information to treating clinicians that influences patient care and are launching a clinical trial called IMPaCT (Individualized Molecular Pancreatic Cancer Therapy). This umbrella design trial randomizes patients with metastatic disease to either standard first-line therapy with gemcitabine, or a molecular phenotype-guided approach using next-generation sequencing strategies to screen for actionable mutations defined through the ICGC effort.

3 Clinical Trial Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial. 2015

Chantrill, Lorraine A / Nagrial, Adnan M / Watson, Clare / Johns, Amber L / Martyn-Smith, Mona / Simpson, Skye / Mead, Scott / Jones, Marc D / Samra, Jaswinder S / Gill, Anthony J / Watson, Nicole / Chin, Venessa T / Humphris, Jeremy L / Chou, Angela / Brown, Belinda / Morey, Adrienne / Pajic, Marina / Grimmond, Sean M / Chang, David K / Thomas, David / Sebastian, Lucille / Sjoquist, Katrin / Yip, Sonia / Pavlakis, Nick / Asghari, Ray / Harvey, Sandra / Grimison, Peter / Simes, John / Biankin, Andrew V / Anonymous5550827 / Anonymous5560827. ·The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Macarthur Cancer Therapy Centre, Campbelltown, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. andrew.biankin@glasgow.ac.uk l.chantrill@garvan.org.au. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. Crown Princess Mary Cancer Centre, Westmead, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Prince of Wales Hospital, Randwick, New South Wales, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. · University of Sydney, New South Wales, Australia. Macquarie University Hospital, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, New South Wales, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. Department of Surgery, Bankstown Hospital, Sydney, New South Wales, Australia. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. · NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. · Northern Sydney Cancer Centre, Royal North Shore Hospital, New South Wales, Australia. · Bankstown Cancer Centre, Bankstown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia. · Sydney Catalyst Translational Cancer Research Centre, University of Sydney, Camperdown, New South Wales, Australia. NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia. Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland. Department of Surgery, Bankstown Hospital, Sydney, New South Wales, Australia. South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia. West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. andrew.biankin@glasgow.ac.uk l.chantrill@garvan.org.au. ·Clin Cancer Res · Pubmed #25896973.

ABSTRACT: PURPOSE: Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies. EXPERIMENTAL DESIGN: The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM). RESULTS: Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study. CONCLUSIONS: Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options.

4 Article Genetic counselling and personalised risk assessment in the Australian pancreatic cancer screening program. 2019

Dwarte, Tanya / McKay, Skye / Johns, Amber / Tucker, Katherine / Spigelman, Allan D / Williams, David / Stoita, Alina. ·1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia. · 0000 0000 9983 6924 · grid.415306.5 · 2Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW Australia. · grid.415193.b · 3University of New South Wales, Prince of Wales Clinical School, Sydney, NSW Australia. · 0000 0004 4902 0432 · grid.1005.4 · 5Cancer Genetics Unit, The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW Australia. · 0000 0000 9119 2677 · grid.437825.f · 6St Vincent's Clinical School, University of New South Wales, Sydney, NSW Australia. · 4Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW Australia. ·Hered Cancer Clin Pract · Pubmed #31666883.

ABSTRACT: Background: Pancreatic cancer (PC) is an aggressive disease with a dismal 5-year survival rate. Surveillance of high-risk individuals is hoped to improve survival outcomes by detection of precursor lesions or early-stage malignancy. Methods: Since 2011, a national high-risk cohort recruited through St Vincent's Hospital, Sydney, has undergone prospective PC screening incorporating annual endoscopic ultrasound, formal genetic counselling and mutation analysis as appropriate. PancPRO, a Bayesian PC risk assessment model, was used to estimate 5-year and lifetime PC risks for familial pancreatic cancer (FPC) participants and this was compared to their perceived chance of pancreatic and other cancers. Genetic counselling guidelines were developed to improve consistency. Follow-up questionnaires were used to assess the role of genetic counselling and testing. Results: We describe the Australian PC screening program design and recruitment strategy and the results of the first 102 individuals who have completed at least one-year of follow-up. Seventy-nine participants met the FPC criteria (≥ two first-degree relatives affected), 22 individuals had both a Conclusions: Participants reported multiple benefits of genetic counselling and testing but continue to seek greater clarification about their individual PC risk. Extension of PancPRO is required to enable personalised PC risk assessment for all high-risk sub-groups. More detailed discussion of PC risk for

5 Article Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. 2018

Chou, Angela / Froio, Danielle / Nagrial, Adnan M / Parkin, Ashleigh / Murphy, Kendelle J / Chin, Venessa T / Wohl, Dalia / Steinmann, Angela / Stark, Rhys / Drury, Alison / Walters, Stacey N / Vennin, Claire / Burgess, Andrew / Pinese, Mark / Chantrill, Lorraine A / Cowley, Mark J / Molloy, Timothy J / Anonymous170925 / Waddell, Nicola / Johns, Amber / Grimmond, Sean M / Chang, David K / Biankin, Andrew V / Sansom, Owen J / Morton, Jennifer P / Grey, Shane T / Cox, Thomas R / Turchini, John / Samra, Jaswinder / Clarke, Stephen J / Timpson, Paul / Gill, Anthony J / Pajic, Marina. ·The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. · Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, SYDPATH, Darlinghurst, Australia. · Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia. · St. Vincent's Hospital, Darlinghurst, Australia. · St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia. · Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia. · University of Melbourne, Melbourne, Victoria, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK. · Department of Surgery, Cancer Research UK, Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK. · Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. · Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia. · Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, New South Wales, Australia. · Department of Surgery, Royal North Shore Hospital, Sydney, New South Wales, Australia. ·Gut · Pubmed #29080858.

ABSTRACT: OBJECTIVE: Extensive molecular heterogeneity of pancreatic ductal adenocarcinoma (PDA), few effective therapies and high mortality make this disease a prime model for advancing development of tailored therapies. The p16-cyclin D-cyclin-dependent kinase 4/6-retinoblastoma (RB) protein (CDK4) pathway, regulator of cell proliferation, is deregulated in PDA. Our aim was to develop a novel personalised treatment strategy for PDA based on targeting CDK4. DESIGN: Sensitivity to potent CDK4/6 inhibitor PD-0332991 (palbociclib) was correlated to protein and genomic data in 19 primary patient-derived PDA lines to identify biomarkers of response. In vivo efficacy of PD-0332991 and combination therapies was determined in subcutaneous, intrasplenic and orthotopic tumour models derived from genome-sequenced patient specimens and genetically engineered model. Mechanistically, monotherapy and combination therapy were investigated in the context of tumour cell and extracellular matrix (ECM) signalling. Prognostic relevance of companion biomarker, RB protein, was evaluated and validated in independent PDA patient cohorts (>500 specimens). RESULTS: Subtype-specific in vivo efficacy of PD-0332991-based therapy was for the first time observed at multiple stages of PDA progression: primary tumour growth, recurrence (second-line therapy) and metastatic setting and may potentially be guided by a simple biomarker (RB protein). PD-0332991 significantly disrupted surrounding ECM organisation, leading to increased quiescence, apoptosis, improved chemosensitivity, decreased invasion, metastatic spread and PDA progression in vivo. RB protein is prevalent in primary operable and metastatic PDA and may present a promising predictive biomarker to guide this therapeutic approach. CONCLUSION: This study demonstrates the promise of CDK4 inhibition in PDA over standard therapy when applied in a molecular subtype-specific context.

6 Article Lost in translation: returning germline genetic results in genome-scale cancer research. 2017

Johns, Amber L / McKay, Skye H / Humphris, Jeremy L / Pinese, Mark / Chantrill, Lorraine A / Mead, R Scott / Tucker, Katherine / Andrews, Lesley / Goodwin, Annabel / Leonard, Conrad / High, Hilda A / Nones, Katia / Patch, Ann-Marie / Merrett, Neil D / Pavlakis, Nick / Kassahn, Karin S / Samra, Jaswinder S / Miller, David K / Chang, David K / Pajic, Marina / Anonymous6590904 / Pearson, John V / Grimmond, Sean M / Waddell, Nicola / Zeps, Nikolajs / Gill, Anthony J / Biankin, Andrew V. ·Cancer Research Program, Garvan Institute of Medical Research, Kinghorn Cancer Centre, Sydney, Australia. · St Vincents Hospital, Darlinghurst, Australia. · Western Sydney University Clinical School, Sydney, Australia. · Genetics Department, SEALS Pathology, Prince of Wales Hospital, Randwick, Sydney, Australia. · School of Medicine, University of New South Wales, Sydney, Australia. · Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, Sydney, Australia. · Cancer Genetics Department, Royal Prince Alfred Hospital and Liverpool Hospital, Sydney, NSW, Australia. · QIMR Berghofer Medical Research Institute, Brisbane, Australia. · Sydney Cancer Genetics, Sydney, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, Australia. · Division of Surgery, School of Medicine, Western Sydney University, Sydney, Australia. · Department of Medical Oncology, Royal North Shore Hospital and Faculty of Medicine, University of Sydney, Sydney, Australia. · Genetic and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, Adelaide, Australia. · Department of Surgery, Royal North Shore Hospital, Sydney, Australia. · Illumina Inc, 5200 Illumina Way, San Diego, CA, 92122, USA. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia. · University of Melbourne, Parkville, Australia. · St John of God Subiaco, Perth, Australia. · School of Surgery, The University of Western Australia, Perth, Australia. · Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Australia and University of Sydney, Sydney, Australia. · Cancer Research Program, Garvan Institute of Medical Research, Kinghorn Cancer Centre, Sydney, Australia. andrew.biankin@glasgow.ac.uk. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK. andrew.biankin@glasgow.ac.uk. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia. andrew.biankin@glasgow.ac.uk. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK. andrew.biankin@glasgow.ac.uk. ·Genome Med · Pubmed #28454591.

ABSTRACT: BACKGROUND: The return of research results (RoR) remains a complex and well-debated issue. Despite the debate, actual data related to the experience of giving individual results back, and the impact these results may have on clinical care and health outcomes, is sorely lacking. Through the work of the Australian Pancreatic Cancer Genome Initiative (APGI) we: (1) delineate the pathway back to the patient where actionable research data were identified; and (2) report the clinical utilisation of individual results returned. Using this experience, we discuss barriers and opportunities associated with a comprehensive process of RoR in large-scale genomic research that may be useful for others developing their own policies. METHODS: We performed whole-genome (n = 184) and exome (n = 208) sequencing of matched tumour-normal DNA pairs from 392 patients with sporadic pancreatic cancer (PC) as part of the APGI. We identified pathogenic germline mutations in candidate genes (n = 130) with established predisposition to PC or medium-high penetrance genes with well-defined cancer associated syndromes or phenotypes. Variants from candidate genes were annotated and classified according to international guidelines. Variants were considered actionable if clinical utility was established, with regard to prevention, diagnosis, prognostication and/or therapy. RESULTS: A total of 48,904 germline variants were identified, with 2356 unique variants undergoing annotation and in silico classification. Twenty cases were deemed actionable and were returned via previously described RoR framework, representing an actionable finding rate of 5.1%. Overall, 1.78% of our cohort experienced clinical benefit from RoR. CONCLUSION: Returning research results within the context of large-scale genomics research is a labour-intensive, highly variable, complex operation. Results that warrant action are not infrequent, but the prevalence of those who experience a clinical difference as a result of returning individual results is currently low.

7 Article Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. 2017

Vennin, Claire / Chin, Venessa T / Warren, Sean C / Lucas, Morghan C / Herrmann, David / Magenau, Astrid / Melenec, Pauline / Walters, Stacey N / Del Monte-Nieto, Gonzalo / Conway, James R W / Nobis, Max / Allam, Amr H / McCloy, Rachael A / Currey, Nicola / Pinese, Mark / Boulghourjian, Alice / Zaratzian, Anaiis / Adam, Arne A S / Heu, Celine / Nagrial, Adnan M / Chou, Angela / Steinmann, Angela / Drury, Alison / Froio, Danielle / Giry-Laterriere, Marc / Harris, Nathanial L E / Phan, Tri / Jain, Rohit / Weninger, Wolfgang / McGhee, Ewan J / Whan, Renee / Johns, Amber L / Samra, Jaswinder S / Chantrill, Lorraine / Gill, Anthony J / Kohonen-Corish, Maija / Harvey, Richard P / Biankin, Andrew V / Anonymous3070902 / Evans, T R Jeffry / Anderson, Kurt I / Grey, Shane T / Ormandy, Christopher J / Gallego-Ortega, David / Wang, Yingxiao / Samuel, Michael S / Sansom, Owen J / Burgess, Andrew / Cox, Thomas R / Morton, Jennifer P / Pajic, Marina / Timpson, Paul. ·The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. · St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia. · Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia. · Biomedical Imaging Facility, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. · Department of Pathology, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia. · Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia. · Immune Imaging Program, Centenary Institute, University of Sydney, Sydney, New South Wales 2006, Australia. · University of Sydney Medical School, Sydney, New South Wales 2006, Australia. · Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · Cancer Research UK Beatson Institute, Glasgow, Scotland G61 BD, U.K. · Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research and Royal North Shore Hospital, Sydney, New South Wales 2065, Australia. · University of Sydney, Sydney, New South Wales 2006, Australia. · Australian Pancreatic Cancer Genome Initiative. · Department of Surgery, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia. · Macarthur Cancer Therapy Centre, Campbelltown Hospital, Sydney, New South Wales 2560, Australia. · School of Medicine, Western Sydney University, Penrith, Sydney, New South Wales 2751, Australia. · School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, New South Wales 2052, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland G61 BD, U.K. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Scotland G61 BD, U.K. · Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA 92121, USA. · Centre for Cancer Biology, SA Pathology and University of South Australia School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia. · The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. m.pajic@garvan.org.au p.timpson@garvan.org.au. ·Sci Transl Med · Pubmed #28381539.

ABSTRACT: The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.

8 Article Whole-genome landscape of pancreatic neuroendocrine tumours. 2017

Scarpa, Aldo / Chang, David K / Nones, Katia / Corbo, Vincenzo / Patch, Ann-Marie / Bailey, Peter / Lawlor, Rita T / Johns, Amber L / Miller, David K / Mafficini, Andrea / Rusev, Borislav / Scardoni, Maria / Antonello, Davide / Barbi, Stefano / Sikora, Katarzyna O / Cingarlini, Sara / Vicentini, Caterina / McKay, Skye / Quinn, Michael C J / Bruxner, Timothy J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / McLean, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Wilson, Peter J / Anderson, Matthew J / Fink, J Lynn / Newell, Felicity / Waddell, Nick / Holmes, Oliver / Kazakoff, Stephen H / Leonard, Conrad / Wood, Scott / Xu, Qinying / Nagaraj, Shivashankar Hiriyur / Amato, Eliana / Dalai, Irene / Bersani, Samantha / Cataldo, Ivana / Dei Tos, Angelo P / Capelli, Paola / Davì, Maria Vittoria / Landoni, Luca / Malpaga, Anna / Miotto, Marco / Whitehall, Vicki L J / Leggett, Barbara A / Harris, Janelle L / Harris, Jonathan / Jones, Marc D / Humphris, Jeremy / Chantrill, Lorraine A / Chin, Venessa / Nagrial, Adnan M / Pajic, Marina / Scarlett, Christopher J / Pinho, Andreia / Rooman, Ilse / Toon, Christopher / Wu, Jianmin / Pinese, Mark / Cowley, Mark / Barbour, Andrew / Mawson, Amanda / Humphrey, Emily S / Colvin, Emily K / Chou, Angela / Lovell, Jessica A / Jamieson, Nigel B / Duthie, Fraser / Gingras, Marie-Claude / Fisher, William E / Dagg, Rebecca A / Lau, Loretta M S / Lee, Michael / Pickett, Hilda A / Reddel, Roger R / Samra, Jaswinder S / Kench, James G / Merrett, Neil D / Epari, Krishna / Nguyen, Nam Q / Zeps, Nikolajs / Falconi, Massimo / Simbolo, Michele / Butturini, Giovanni / Van Buren, George / Partelli, Stefano / Fassan, Matteo / Anonymous6880896 / Khanna, Kum Kum / Gill, Anthony J / Wheeler, David A / Gibbs, Richard A / Musgrove, Elizabeth A / Bassi, Claudio / Tortora, Giampaolo / Pederzoli, Paolo / Pearson, John V / Waddell, Nicola / Biankin, Andrew V / Grimmond, Sean M. ·ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. · QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · Medical Oncology, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, General Hospital of Treviso, Department of Medicine, University of Padua, Italy. · Department of Medicine, Section of Endocrinology, University and Hospital Trust of Verona, Verona, Italy. · The University of Queensland, School of Medicine, Brisbane 4006, Australia. · Pathology Queensland, Brisbane 4006, Australia. · Royal Brisbane and Women's Hospital, Department of Gastroenterology and Hepatology, Brisbane 4006, Australia. · Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. · School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · Department of Anatomical Pathology. St Vincent's Hospital, Sydney, New South Wales 2010, Australia. · Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. · Department of Pathology, Queen Elizabeth University Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. · Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA. · Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia. · Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. · University of Sydney. Sydney, New South Wales 2006, Australia. · Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · School of Medicine, Western Sydney University, Penrith, New South Wales 2175, Australia. · Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia 6009, Australia. · St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. · Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. · University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, 3010, Victoria, Australia. ·Nature · Pubmed #28199314.

ABSTRACT: The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

9 Article MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity. 2017

Sharbeen, George / Youkhana, Janet / Mawson, Amanda / McCarroll, Joshua / Nunez, Andrea / Biankin, Andrew / Johns, Amber / Goldstein, David / Phillips, Phoebe. ·Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia. · Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia. · Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom. · The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia. ·Oncotarget · Pubmed #27999205.

ABSTRACT: Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

10 Article Hypermutation In Pancreatic Cancer. 2017

Humphris, Jeremy L / Patch, Ann-Marie / Nones, Katia / Bailey, Peter J / Johns, Amber L / McKay, Skye / Chang, David K / Miller, David K / Pajic, Marina / Kassahn, Karin S / Quinn, Michael C J / Bruxner, Timothy J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / Manning, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Stone, Andrew / Wilson, Peter J / Anderson, Matthew / Fink, J Lynn / Holmes, Oliver / Kazakoff, Stephen / Leonard, Conrad / Newell, Felicity / Waddell, Nick / Wood, Scott / Mead, Ronald S / Xu, Qinying / Wu, Jianmin / Pinese, Mark / Cowley, Mark J / Jones, Marc D / Nagrial, Adnan M / Chin, Venessa T / Chantrill, Lorraine A / Mawson, Amanda / Chou, Angela / Scarlett, Christopher J / Pinho, Andreia V / Rooman, Ilse / Giry-Laterriere, Marc / Samra, Jaswinder S / Kench, James G / Merrett, Neil D / Toon, Christopher W / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Jamieson, Nigel B / McKay, Colin J / Carter, C Ross / Dickson, Euan J / Graham, Janet S / Duthie, Fraser / Oien, Karin / Hair, Jane / Morton, Jennifer P / Sansom, Owen J / Grützmann, Robert / Hruban, Ralph H / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Schulick, Richard D / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Rusev, Borislav / Corbo, Vincenzo / Salvia, Roberto / Cataldo, Ivana / Tortora, Giampaolo / Tempero, Margaret A / Anonymous5070887 / Hofmann, Oliver / Eshleman, James R / Pilarsky, Christian / Scarpa, Aldo / Musgrove, Elizabeth A / Gill, Anthony J / Pearson, John V / Grimmond, Sean M / Waddell, Nicola / Biankin, Andrew V. ·The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia. · QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Surgery, Bankstown Hospital, Bankstown, Sydney, New South Wales, Australia; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales Australia, Liverpool, New South Wales, Australia; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Australia, Darlinghurst, New South Wales, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; Genetic and Molecular Pathology, Adelaide, South Australia, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Australia, Darlinghurst, New South Wales, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; South Eastern Area Laboratory Services Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia; Sonic Genetics, Douglass Hanly Moir Pathology, New South Wales, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Department of Anatomical Pathology, SydPath, St Vincent's Hospital, New South Wales, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia. · Department of Surgery, Royal North Shore Hospital, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia. · Department of Surgery, Bankstown Hospital, Bankstown, Sydney, New South Wales, Australia; School of Medicine, Western Sydney University, Penrith, New South Wales, Australia. · Department of Surgery, Fiona Stanley Hospital, Murdoch, Washington. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia. · Department of Surgery, Princess Alexandra Hospital, Woollongabba, Queensland, Australia. · School of Surgery, University of Western Australia, Australia and St John of God Pathology, Subiaco, Washington. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Medical Oncology, Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom. · Department of Pathology, Southern General Hospital, Greater Glasgow & Clyde National Health Service, Glasgow, United Kingdom. · Greater Glasgow and Clyde Bio-repository, Pathology Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom. · Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute for Cancer Science, University of Glasgow, Glasgow, United Kingdom. · Universitätsklinikum Erlangen, Erlangen, Germany. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland. · ARC-NET Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy; Department of Pathology and Diagnostics, University of Verona, Verona, Italy. · Department of Medicine, University and Hospital Trust of Verona, Verona, Italy. · Division of Hematology and Oncology, University of California, San Francisco, California. · Australian Pancreatic Cancer Genome Initiative. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom. · Universitätsklinikum Erlangen, Department of Surgery, University of Erlangen-Nueremberg, Germany. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Australia, Darlinghurst, New South Wales, Australia. · The Kinghorn Cancer Centre, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia. · QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. Electronic address: nic.waddell@qimrberghofer.edu.au. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Surgery, Bankstown Hospital, Bankstown, Sydney, New South Wales, Australia; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales Australia, Liverpool, New South Wales, Australia; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom. Electronic address: andrew.biankin@glasgow.ac.uk. ·Gastroenterology · Pubmed #27856273.

ABSTRACT: Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.

11 Article Delineating the Role of βIV-Tubulins in Pancreatic Cancer: βIVb-Tubulin Inhibition Sensitizes Pancreatic Cancer Cells to Vinca Alkaloids. 2016

Sharbeen, G / McCarroll, J / Liu, J / Youkhana, J / Limbri, L F / Biankin, A V / Johns, A / Kavallaris, M / Goldstein, D / Phillips, P A. ·Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052. · Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia, 2031; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW, Australia. · The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom. · The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia. · Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW, Australia. Electronic address: p.phillips@unsw.edu.au. ·Neoplasia · Pubmed #27889644.

ABSTRACT: Pancreatic cancer (PC) is a lethal disease which is characterized by chemoresistance. Components of the cell cytoskeleton are therapeutic targets in cancer. βIV-tubulin is one such component that has two isotypes-βIVa and βIVb. βIVa and βIVb isotypes only differ in two amino acids at their C-terminus. Studies have implicated βIVa-tubulin or βIVb-tubulin expression with chemoresistance in prostate, breast, ovarian and lung cancer. However, no studies have examined the role of βIV-tubulin in PC or attempted to identify isotype specific roles in regulating cancer cell growth and chemosensitivity. We aimed to determine the role of βIVa- or βIVb-tubulin on PC growth and chemosensitivity. PC cells (MiaPaCa-2, HPAF-II, AsPC1) were treated with siRNA (control, βIVa-tubulin or βIVb-tubulin). The ability of PC cells to form colonies in the presence or absence of chemotherapy was measured by clonogenic assays. Inhibition of βIVa-tubulin in PC cells had no effect chemosensitivity. In contrast, inhibition of βIVb-tubulin in PC cells sensitized to vinca alkaloids (Vincristine, Vinorelbine and Vinblastine), which was accompanied by increased apoptosis and enhanced cell cycle arrest. We show for the first time that βIVb-tubulin, but not βIVa-tubulin, plays a role in regulating vinca alkaloid chemosensitivity in PC cells. The results from this study suggest βIVb-tubulin may be a novel therapeutic target and predictor of vinca alkaloid sensitivity for PC and warrants further investigation.

12 Article Genomic analyses identify molecular subtypes of pancreatic cancer. 2016

Bailey, Peter / Chang, David K / Nones, Katia / Johns, Amber L / Patch, Ann-Marie / Gingras, Marie-Claude / Miller, David K / Christ, Angelika N / Bruxner, Tim J C / Quinn, Michael C / Nourse, Craig / Murtaugh, L Charles / Harliwong, Ivon / Idrisoglu, Senel / Manning, Suzanne / Nourbakhsh, Ehsan / Wani, Shivangi / Fink, Lynn / Holmes, Oliver / Chin, Venessa / Anderson, Matthew J / Kazakoff, Stephen / Leonard, Conrad / Newell, Felicity / Waddell, Nick / Wood, Scott / Xu, Qinying / Wilson, Peter J / Cloonan, Nicole / Kassahn, Karin S / Taylor, Darrin / Quek, Kelly / Robertson, Alan / Pantano, Lorena / Mincarelli, Laura / Sanchez, Luis N / Evers, Lisa / Wu, Jianmin / Pinese, Mark / Cowley, Mark J / Jones, Marc D / Colvin, Emily K / Nagrial, Adnan M / Humphrey, Emily S / Chantrill, Lorraine A / Mawson, Amanda / Humphris, Jeremy / Chou, Angela / Pajic, Marina / Scarlett, Christopher J / Pinho, Andreia V / Giry-Laterriere, Marc / Rooman, Ilse / Samra, Jaswinder S / Kench, James G / Lovell, Jessica A / Merrett, Neil D / Toon, Christopher W / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Moran-Jones, Kim / Jamieson, Nigel B / Graham, Janet S / Duthie, Fraser / Oien, Karin / Hair, Jane / Grützmann, Robert / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Corbo, Vincenzo / Bassi, Claudio / Rusev, Borislav / Capelli, Paola / Salvia, Roberto / Tortora, Giampaolo / Mukhopadhyay, Debabrata / Petersen, Gloria M / Anonymous2640859 / Munzy, Donna M / Fisher, William E / Karim, Saadia A / Eshleman, James R / Hruban, Ralph H / Pilarsky, Christian / Morton, Jennifer P / Sansom, Owen J / Scarpa, Aldo / Musgrove, Elizabeth A / Bailey, Ulla-Maja Hagbo / Hofmann, Oliver / Sutherland, Robert L / Wheeler, David A / Gill, Anthony J / Gibbs, Richard A / Pearson, John V / Waddell, Nicola / Biankin, Andrew V / Grimmond, Sean M. ·Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. · QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. · Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. · Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. · Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. · School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. · Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. · Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. · Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. · St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. · School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. · University of Sydney, Sydney, New South Wales 2006, Australia. · Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. · School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. · Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. · Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. · Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. · GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. · Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. · Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. · The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. · Mayo Clinic, Rochester, Minnesota 55905, USA. · Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. · Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. · Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. · University of Melbourne, Parkville, Victoria 3010, Australia. ·Nature · Pubmed #26909576.

ABSTRACT: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

13 Article Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation. 2016

Gingras, Marie-Claude / Covington, Kyle R / Chang, David K / Donehower, Lawrence A / Gill, Anthony J / Ittmann, Michael M / Creighton, Chad J / Johns, Amber L / Shinbrot, Eve / Dewal, Ninad / Fisher, William E / Anonymous400856 / Pilarsky, Christian / Grützmann, Robert / Overman, Michael J / Jamieson, Nigel B / Van Buren, George / Drummond, Jennifer / Walker, Kimberly / Hampton, Oliver A / Xi, Liu / Muzny, Donna M / Doddapaneni, Harsha / Lee, Sandra L / Bellair, Michelle / Hu, Jianhong / Han, Yi / Dinh, Huyen H / Dahdouli, Mike / Samra, Jaswinder S / Bailey, Peter / Waddell, Nicola / Pearson, John V / Harliwong, Ivon / Wang, Huamin / Aust, Daniela / Oien, Karin A / Hruban, Ralph H / Hodges, Sally E / McElhany, Amy / Saengboonmee, Charupong / Duthie, Fraser R / Grimmond, Sean M / Biankin, Andrew V / Wheeler, David A / Gibbs, Richard A. ·Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address: mgingras@bcm.edu. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; The Kinghorn Cancer Centre and the Cancer Research Program Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, NSW 2170, Australia. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. · The Kinghorn Cancer Centre and the Cancer Research Program Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX 77030, USA. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. · The Kinghorn Cancer Centre and the Cancer Research Program Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia. · Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; The Elkins Pancreas Center at Baylor College of Medicine, Houston, TX 77030, USA. · Department of Surgery, TU Dresden, 01307 Dresden, Germany. · Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; Academic Unit of Surgery, Institute of Cancer Sciences, Glasgow Royal Infirmary, Level 2, New Lister Building, University of Glasgow, Glasgow G31 2ER, UK. · Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. · Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. · Department of Pathology, TU Dresden, 01307 Dresden, Germany. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; Department of Pathology, Southern General Hospital, Greater Glasgow and Clyde NHS, Glasgow G51 4TF, UK. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. · Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; The Elkins Pancreas Center at Baylor College of Medicine, Houston, TX 77030, USA. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address: wheeler@bcm.edu. ·Cell Rep · Pubmed #26804919.

ABSTRACT: The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis.

14 Article Whole genomes redefine the mutational landscape of pancreatic cancer. 2015

Waddell, Nicola / Pajic, Marina / Patch, Ann-Marie / Chang, David K / Kassahn, Karin S / Bailey, Peter / Johns, Amber L / Miller, David / Nones, Katia / Quek, Kelly / Quinn, Michael C J / Robertson, Alan J / Fadlullah, Muhammad Z H / Bruxner, Tim J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / Manning, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Wani, Shivangi / Wilson, Peter J / Markham, Emma / Cloonan, Nicole / Anderson, Matthew J / Fink, J Lynn / Holmes, Oliver / Kazakoff, Stephen H / Leonard, Conrad / Newell, Felicity / Poudel, Barsha / Song, Sarah / Taylor, Darrin / Waddell, Nick / Wood, Scott / Xu, Qinying / Wu, Jianmin / Pinese, Mark / Cowley, Mark J / Lee, Hong C / Jones, Marc D / Nagrial, Adnan M / Humphris, Jeremy / Chantrill, Lorraine A / Chin, Venessa / Steinmann, Angela M / Mawson, Amanda / Humphrey, Emily S / Colvin, Emily K / Chou, Angela / Scarlett, Christopher J / Pinho, Andreia V / Giry-Laterriere, Marc / Rooman, Ilse / Samra, Jaswinder S / Kench, James G / Pettitt, Jessica A / Merrett, Neil D / Toon, Christopher / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Jamieson, Nigel B / Graham, Janet S / Niclou, Simone P / Bjerkvig, Rolf / Grützmann, Robert / Aust, Daniela / Hruban, Ralph H / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Corbo, Vincenzo / Bassi, Claudio / Falconi, Massimo / Zamboni, Giuseppe / Tortora, Giampaolo / Tempero, Margaret A / Anonymous400822 / Gill, Anthony J / Eshleman, James R / Pilarsky, Christian / Scarpa, Aldo / Musgrove, Elizabeth A / Pearson, John V / Biankin, Andrew V / Grimmond, Sean M. ·1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. · Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. · 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. · Norlux Neuro-Oncology Laboratory, CRP-Santé Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. · Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. · Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. · The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. · ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. · 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. · Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. · Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. · 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ·Nature · Pubmed #25719666.

ABSTRACT: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

15 Article βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. 2015

McCarroll, Joshua A / Sharbeen, George / Liu, Jie / Youkhana, Janet / Goldstein, David / McCarthy, Nigel / Limbri, Lydia F / Dischl, Dominic / Ceyhan, Güralp O / Erkan, Mert / Johns, Amber L / Biankin, Andrew V / Kavallaris, Maria / Phillips, Phoebe A. ·Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia. · ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia. · Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia. · Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, Australia. · Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany. · Department of Surgery Koc University School of Medicine, Istanbul, Turkey. · The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom. ·Oncotarget · Pubmed #25544769.

ABSTRACT: Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients.

16 Article Clinical and pathologic features of familial pancreatic cancer. 2014

Humphris, Jeremy L / Johns, Amber L / Simpson, Skye H / Cowley, Mark J / Pajic, Marina / Chang, David K / Nagrial, Adnan M / Chin, Venessa T / Chantrill, Lorraine A / Pinese, Mark / Mead, R Scott / Gill, Anthony J / Samra, Jaswinder S / Kench, James G / Musgrove, Elizabeth A / Tucker, Katherine M / Spigelman, Allan D / Waddell, Nic / Grimmond, Sean M / Biankin, Andrew V / Anonymous2030809. ·The Kinghorn Cancer Center, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ·Cancer · Pubmed #25313458.

ABSTRACT: BACKGROUND: Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC). METHODS: Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC). Patients were classified with FPC if they had ≥1 affected first-degree relatives; otherwise, they were classified with sporadic PC (SPC). RESULTS: The prevalence of FPC in this cohort was 8.9%. In FPC families with an affected parent-child pair, 71% in the subsequent generation were 12.3 years younger at diagnosis. Patients with FPC had more first-degree relatives who had an extrapancreatic malignancy (EPM) (42.6% vs 21.2; P<.0001), particularly melanoma and endometrial cancer, but not a personal history of EPM. Patients with SPC were more likely to be active smokers, have higher cumulative tobacco exposure, and have fewer multifocal precursor lesions, but these were not associated with differences in survival. Long-standing diabetes mellitus (>2 years) was associated with poor survival in both groups. CONCLUSIONS: FPC represents 9% of PC, and the risk of malignancy in kindred does not appear to be confined to the pancreas. Patients with FPC have more precursor lesions and include fewer active smokers, but other clinicopathologic factors and outcome are similar to those in patients with SPC. Furthermore, some FPC kindreds may exhibit anticipation. A better understanding of the clinical features of PC will facilitate efforts to uncover novel susceptibility genes and the development of early detection strategies.

17 Article Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. 2014

Nones, Katia / Waddell, Nic / Song, Sarah / Patch, Ann-Marie / Miller, David / Johns, Amber / Wu, Jianmin / Kassahn, Karin S / Wood, David / Bailey, Peter / Fink, Lynn / Manning, Suzanne / Christ, Angelika N / Nourse, Craig / Kazakoff, Stephen / Taylor, Darrin / Leonard, Conrad / Chang, David K / Jones, Marc D / Thomas, Michelle / Watson, Clare / Pinese, Mark / Cowley, Mark / Rooman, Ilse / Pajic, Marina / Anonymous890784 / Butturini, Giovanni / Malpaga, Anna / Corbo, Vincenzo / Crippa, Stefano / Falconi, Massimo / Zamboni, Giuseppe / Castelli, Paola / Lawlor, Rita T / Gill, Anthony J / Scarpa, Aldo / Pearson, John V / Biankin, Andrew V / Grimmond, Sean M. ·Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia. ·Int J Cancer · Pubmed #24500968.

ABSTRACT: The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.

18 Article Adjuvant chemotherapy in elderly patients with pancreatic cancer. 2014

Nagrial, A M / Chang, D K / Nguyen, N Q / Johns, A L / Chantrill, L A / Humphris, J L / Chin, V T / Samra, J S / Gill, A J / Pajic, M / Anonymous2980776 / Pinese, M / Colvin, E K / Scarlett, C J / Chou, A / Kench, J G / Sutherland, R L / Horvath, L G / Biankin, A V. ·The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney NSW 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool NSW 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, UK. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] Macarthur Cancer Therapy Centre, Campbelltown, NSW 2560, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia. · 1] Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia [2] Sydney Medical School, University of Sydney, Sydney, NSW 2006; Australia. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Sydney, NSW 2010, Australia. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. · 1] The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia [2] Department of Medical Oncology, Sydney Cancer Centre, Sydney, NSW 2050, Australia. ·Br J Cancer · Pubmed #24263063.

ABSTRACT: BACKGROUND: Adjuvant chemotherapy improves survival for patients with resected pancreatic cancer. Elderly patients are under-represented in Phase III clinical trials, and as a consequence the efficacy of adjuvant therapy in older patients with pancreatic cancer is not clear. We aimed to assess the use and efficacy of adjuvant chemotherapy in older patients with pancreatic cancer. METHODS: We assessed a community cohort of 439 patients with a diagnosis of pancreatic ductal adenocarcinoma who underwent operative resection in centres associated with the Australian Pancreatic Cancer Genome Initiative. RESULTS: The median age of the cohort was 67 years. Overall only 47% of all patients received adjuvant therapy. Patients who received adjuvant chemotherapy were predominantly younger, had later stage disease, more lymph node involvement and more evidence of perineural invasion than the group that did not receive adjuvant treatment. Overall, adjuvant chemotherapy was associated with prolonged survival (median 22.1 vs 15.8 months; P<0.0001). Older patients (aged ≥70) were less likely to receive adjuvant chemotherapy (51.5% vs 29.8%; P<0.0001). Older patients had a particularly poor outcome when adjuvant therapy was not delivered (median survival=13.1 months; HR 1.89, 95% CI: 1.27-2.78, P=0.002). CONCLUSION: Patients aged ≥70 are less likely to receive adjuvant therapy although it is associated with improved outcome. Increased use of adjuvant therapy in older individuals is encouraged as they constitute a large proportion of patients with pancreatic cancer.

19 Article Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. 2012

Biankin, Andrew V / Waddell, Nicola / Kassahn, Karin S / Gingras, Marie-Claude / Muthuswamy, Lakshmi B / Johns, Amber L / Miller, David K / Wilson, Peter J / Patch, Ann-Marie / Wu, Jianmin / Chang, David K / Cowley, Mark J / Gardiner, Brooke B / Song, Sarah / Harliwong, Ivon / Idrisoglu, Senel / Nourse, Craig / Nourbakhsh, Ehsan / Manning, Suzanne / Wani, Shivangi / Gongora, Milena / Pajic, Marina / Scarlett, Christopher J / Gill, Anthony J / Pinho, Andreia V / Rooman, Ilse / Anderson, Matthew / Holmes, Oliver / Leonard, Conrad / Taylor, Darrin / Wood, Scott / Xu, Qinying / Nones, Katia / Fink, J Lynn / Christ, Angelika / Bruxner, Tim / Cloonan, Nicole / Kolle, Gabriel / Newell, Felicity / Pinese, Mark / Mead, R Scott / Humphris, Jeremy L / Kaplan, Warren / Jones, Marc D / Colvin, Emily K / Nagrial, Adnan M / Humphrey, Emily S / Chou, Angela / Chin, Venessa T / Chantrill, Lorraine A / Mawson, Amanda / Samra, Jaswinder S / Kench, James G / Lovell, Jessica A / Daly, Roger J / Merrett, Neil D / Toon, Christopher / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Anonymous5580740 / Kakkar, Nipun / Zhao, Fengmei / Wu, Yuan Qing / Wang, Min / Muzny, Donna M / Fisher, William E / Brunicardi, F Charles / Hodges, Sally E / Reid, Jeffrey G / Drummond, Jennifer / Chang, Kyle / Han, Yi / Lewis, Lora R / Dinh, Huyen / Buhay, Christian J / Beck, Timothy / Timms, Lee / Sam, Michelle / Begley, Kimberly / Brown, Andrew / Pai, Deepa / Panchal, Ami / Buchner, Nicholas / De Borja, Richard / Denroche, Robert E / Yung, Christina K / Serra, Stefano / Onetto, Nicole / Mukhopadhyay, Debabrata / Tsao, Ming-Sound / Shaw, Patricia A / Petersen, Gloria M / Gallinger, Steven / Hruban, Ralph H / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Schulick, Richard D / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Capelli, Paola / Corbo, Vincenzo / Scardoni, Maria / Tortora, Giampaolo / Tempero, Margaret A / Mann, Karen M / Jenkins, Nancy A / Perez-Mancera, Pedro A / Adams, David J / Largaespada, David A / Wessels, Lodewyk F A / Rust, Alistair G / Stein, Lincoln D / Tuveson, David A / Copeland, Neal G / Musgrove, Elizabeth A / Scarpa, Aldo / Eshleman, James R / Hudson, Thomas J / Sutherland, Robert L / Wheeler, David A / Pearson, John V / McPherson, John D / Gibbs, Richard A / Grimmond, Sean M. ·The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia. ·Nature · Pubmed #23103869.

ABSTRACT: Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

20 Article qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. 2012

Song, Sarah / Nones, Katia / Miller, David / Harliwong, Ivon / Kassahn, Karin S / Pinese, Mark / Pajic, Marina / Gill, Anthony J / Johns, Amber L / Anderson, Matthew / Holmes, Oliver / Leonard, Conrad / Taylor, Darrin / Wood, Scott / Xu, Qinying / Newell, Felicity / Cowley, Mark J / Wu, Jianmin / Wilson, Peter / Fink, Lynn / Biankin, Andrew V / Waddell, Nic / Grimmond, Sean M / Pearson, John V. ·Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland, Australia. s.song@imb.uq.edu.au ·PLoS One · Pubmed #23049875.

ABSTRACT: Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.

21 Article The prognostic and predictive value of serum CA19.9 in pancreatic cancer. 2012

Humphris, J L / Chang, D K / Johns, A L / Scarlett, C J / Pajic, M / Jones, M D / Colvin, E K / Nagrial, A / Chin, V T / Chantrill, L A / Samra, J S / Gill, A J / Kench, J G / Merrett, N D / Das, A / Musgrove, E A / Sutherland, R L / Biankin, A V / Anonymous2410715. ·Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia. ·Ann Oncol · Pubmed #22241899.

ABSTRACT: BACKGROUND: Current staging methods for pancreatic cancer (PC) are inadequate, and biomarkers to aid clinical decision making are lacking. Despite the availability of the serum marker carbohydrate antigen 19.9 (CA19.9) for over two decades, its precise role in the management of PC is yet to be defined, and as a consequence, it is not widely used. METHODS: We assessed the relationship between perioperative serum CA19.9 levels, survival and adjuvant chemotherapeutic responsiveness in a cohort of 260 patients who underwent operative resection for PC. RESULTS: By specifically assessing the subgroup of patients with detectable CA19.9, we identified potential utility at key clinical decision points. Low postoperative CA19.9 at 3 months (median survival 25.6 vs 14.8 months, P=0.0052) and before adjuvant chemotherapy were independent prognostic factors. Patients with postoperative CA 19.9 levels>90 U/ml did not benefit from adjuvant chemotherapy (P=0.7194) compared with those with a CA19.9 of ≤90 U/ml (median 26.0 vs 16.7 months, P=0.0108). Normalization of CA19.9 within 6 months of resection was also an independent favorable prognostic factor (median 29.9 vs 14.8 months, P=0.0004) and normal perioperative CA19.9 levels identified a good prognostic group, which was associated with a 5-year survival of 42%. CONCLUSIONS: Perioperative serum CA19.9 measurements are informative in patients with detectable CA19.9 (defined by serum levels of >5 U/ml) and have potential clinical utility in predicting outcome and response to adjuvant chemotherapy. Future clinical trials should prioritize incorporation of CA19.9 measurement at key decision points to prospectively validate these findings and facilitate implementation.

22 Article Clinical and immunohistochemical features of 34 solid pseudopapillary tumors of the pancreas. 2011

Nguyen, Nam Q / Johns, Amber L / Gill, Anthony J / Ring, Nicole / Chang, David K / Clarkson, Annette / Merrett, Neil D / Kench, James G / Colvin, Emily K / Scarlett, Christopher J / Biankin, Andrew V. ·Department of Gastroenterology, Bankstown Hospital, New South Wales, Australia. ·J Gastroenterol Hepatol · Pubmed #21261715.

ABSTRACT: BACKGROUND AND AIM: Clinicopathological data regarding pancreatic solid pseudopapillary tumors (SPT) in a multiethnic country are limited. The aim of the present study was to characterize pancreatic SPT in Australia. METHODS: Clinicopathological features, treatment, immunohistochemical findings and outcome data of 34 patients (79% Caucasian, 12% Asian, 6% South Pacific Islander and 3% African) with pancreatic SPT were reviewed. RESULTS: The most presenting complaint was abdominal pain. Median diameter of tumors was 60 mm (range: 20-220); predominantly located in the pancreatic tail (tail : body : head = 23:3:8). All tumors were resected and patients underwent surgery, including a liver resection for metastasis, all patients were alive after a median follow up of 70 months (IQR: 48-178). Two patients underwent repeated surgery for local recurrences with liver metastases after 8 and 18 months, which were successfully managed by surgical resection. Completeness of excision, perineural spread, vascular space invasion, mitotic rate and cellular atypia did not predict recurrence. In all cases, there was aberrant nuclear staining of beta-catenin and a loss of membranous expression of E-cadherin with aberrant nuclear localization of the cytoplasmic domain. Most pancreatic SPT were also strongly positive for CD10 (96%), progesterone receptor (79%), cytokeratin (28%), synapthophysin (26%) and chromogranin (15%). CONCLUSIONS: Pancreatic SPT occur in all races and are uniformly indolent. Given complete resection of a pancreatic SPT is usually curative and recurrences can be treated with re-operation, correct diagnosis is important.