Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Ziying Jian
Based on 4 articles published since 2010
(Why 4 articles?)
||||

Between 2010 and 2020, Ziying Jian wrote the following 4 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Ductal obstruction promotes formation of preneoplastic lesions from the pancreatic ductal compartment. 2019

Cheng, Tao / Zhang, Zhiheng / Jian, Ziying / Raulefs, Susanne / Schlitter, Anna Melissa / Steiger, Katja / Maeritz, Nadja / Zhao, Yamin / Shen, Shanshan / Zou, Xiaoping / Ceyhan, Güralp O / Friess, Helmut / Kleeff, Jörg / Michalski, Christoph W / Kong, Bo. ·Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany. · Institute of Pathology, TUM, Munich, Germany. · German Cancer Consortium (DKTK) at the partner site Munich, Munich, Germany. · Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China. · Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany. ·Int J Cancer · Pubmed #30412288.

ABSTRACT: Pancreatitis is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC). Previous studies in mice have demonstrated that pancreatitis contributes to oncogenic Kras-driven carcinogenesis, probably initiated in acinar cells; however, oncogenic Kras alone or in combination with caerulein-induced pancreatitis is not sufficient in initiating PDAC from the ductal compartment. We thus introduced ductal obstruction - which induces a more severe form of pancreatitis - by pancreatic ductal ligation in mice harbouring oncogenic Kras. This induced a particular phenotype with highly proliferative nonmucinous cells with nuclear atypia. Around these lesions, there was a significant proliferation of activated fibroblasts and infiltration of immune cells, corroborating the pathological features of preneoplastic lesions. Lineage-tracing experiments revealed that these preneoplastic cells derived from two distinctive cellular sources: acinar and ductal cells. Phenotypic characterisation revealed that the duct-derived preneoplastic lesions show a high proliferative potential with persistent activation of tumour-promoting inflammatory pathways while the acinar-derived ones were less proliferative with persistent p53 activation. Furthermore, the duct-derived preneoplastic cells have a particularly high nuclear-to-cytoplasmic ratio. These data demonstrate that ductal obstruction promotes preneoplastic lesion formation from the pancreatic ductal compartment.

2 Article Glycemic Variability Promotes Both Local Invasion and Metastatic Colonization by Pancreatic Ductal Adenocarcinoma. 2018

Jian, Ziying / Cheng, Tao / Zhang, Zhiheng / Raulefs, Susanne / Shi, Kuangyu / Steiger, Katja / Maeritz, Nadja / Kleigrewe, Karin / Hofmann, Thomas / Benitz, Simone / Bruns, Philipp / Lamp, Daniel / Jastroch, Martin / Akkan, Jan / Jäger, Carsten / Huang, Peilin / Nie, Shuang / Shen, Shanshan / Zou, Xiaoping / Ceyhan, Güralp O / Michalski, Christoph W / Friess, Helmut / Kleeff, Jörg / Kong, Bo. ·Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany. · Department of Nuclear Medicine, TUM, Munich, Germany. · Institute of Pathology, TUM, Munich, Germany. · Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany. · Medizinische Klinik und Poliklinik II, Klinikum der LMU, Munich, Germany. · Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany. · Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany. · German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany. · Division of Metabolic Diseases, TUM, Munich, Germany. · Department of Pathology, School of Medicine, Southeast University, Nanjing, China. · Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China. · Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany. · German Cancer Consortium (DKTK) at the partner site Munich, Munich, Germany. ·Cell Mol Gastroenterol Hepatol · Pubmed #30258965.

ABSTRACT: Background & Aims: Although nearly half of pancreatic ductal adenocarcinoma (PDAC) patients have diabetes mellitus with episodes of hyperglycemia, its tumor microenvironment is hypoglycemic. Thus, it is crucial for PDAC cells to develop adaptive mechanisms dealing with oscillating glucose levels. So far, the biological impact of such glycemic variability on PDAC biology remains unknown. Methods: Murine PDAC cells were cultured in low- and high-glucose medium to investigate the molecular, biochemical, and metabolic influence of glycemic variability on tumor behavior. A set of in vivo functional assays including orthotopic implantation and portal and tail vein injection were used. Results were further confirmed on tissues from PDAC patients. Results: Glycemic variability has no significant effect on PDAC cell proliferation. Hypoglycemia is associated with local invasion and angiogenesis, whereas hyperglycemia promotes metastatic colonization. Increased metastatic colonization under hyperglycemia is due to increased expression of runt related transcription factor 3 (Runx3), which further activates expression of collagen, type VI, alpha 1 (Col6a1), forming a glycemic pro-metastatic pathway. Through epigenetic machinery, retinoic acid receptor beta (Rarb) expression fluctuates according to glycemic variability, acting as a critical sensor relaying the glycemic signal to Runx3/Col6a1. Moreover, the signal axis of Rarb/Runx3/Col6a1 is pharmaceutically accessible to a widely used antidiabetic substance, metformin, and Rar modulator. Finally, PDAC tissues from patients with diabetes show an increased expression of COL6A1. Conclusions: Glycemic variability promotes both local invasion and metastatic colonization of PDAC. A pro-metastatic signal axis Rarb/Runx3/Col6a1 whose activity is controlled by glycemic variability is identified. The therapeutic relevance of this pathway needs to be explored in PDAC patients, especially in those with diabetes.

3 Article Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy. 2018

Kong, Bo / Bruns, Philipp / Behler, Nora A / Chang, Ligong / Schlitter, Anna Melissa / Cao, Jing / Gewies, Andreas / Ruland, Jürgen / Fritzsche, Sina / Valkovskaya, Nataliya / Jian, Ziying / Regel, Ivonne / Raulefs, Susanne / Irmler, Martin / Beckers, Johannes / Friess, Helmut / Erkan, Mert / Mueller, Nikola S / Roth, Susanne / Hackert, Thilo / Esposito, Irene / Theis, Fabian J / Kleeff, Jörg / Michalski, Christoph W. ·Department of Surgery, Technische Universität München (TUM), Munich, Germany. · Department of Gastroenterology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China. · Institute of Computational Biology, Helmholtz-Zentrum München GmbH, Neuherberg, Germany. · Institute of Pathology, TUM, Munich, Germany. · Institute für Klinische Chemie und Pathobiochemie, TUM, Munich, Germany. · Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany. · German Cancer Consortium (DKTK) at the partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany. · German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany. · Institute of Pathology, Heinrich-Heine University, Duesseldorf, Germany. · Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany. · Chair of Experimental Genetics, Technische Universität München, Freising, Germany. · Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany. · Department of Surgery, Koc University, Istanbul, Turkey. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. · Department of Mathematics, TUM, Munich, Germany. · NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK. ·Gut · Pubmed #27646934.

ABSTRACT: OBJECTIVE: The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. DESIGN: We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated Kras RESULTS: We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. CONCLUSIONS: These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis.

4 Article A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling. 2016

Kong, Bo / Wu, Weiwei / Cheng, Tao / Schlitter, Anna Melissa / Qian, Chengjia / Bruns, Philipp / Jian, Ziying / Jäger, Carsten / Regel, Ivonne / Raulefs, Susanne / Behler, Nora / Irmler, Martin / Beckers, Johannes / Friess, Helmut / Erkan, Mert / Siveke, Jens T / Tannapfel, Andrea / Hahn, Stephan A / Theis, Fabian J / Esposito, Irene / Kleeff, Jörg / Michalski, Christoph W. ·Department of Surgery, Technische Universität München (TUM), Munich, Germany. · Institute of Pathology, TUM, Munich, Germany. · Department of Surgery, Technische Universität München (TUM), Munich, Germany Institute of Computational Biology, Helmholtz-Zentrum München, Munich, Germany. · Institute of Experimental Genetics (IEG), Helmholtz-Zentrum München, Munich, Germany. · Institute of Experimental Genetics (IEG), Helmholtz-Zentrum München, Munich, Germany Technische Universität München, Chair of Experimental Genetics, Freising, Germany Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany. · Department of Surgery, Koc University School of Medicine, Istanbul, Turkey. · Department of Gastroenterology, TUM, Munich, Germany. · Institute of Pathology, Ruhr-University Bochum, Bochum, Germany. · Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany. · Institute of Computational Biology, Helmholtz-Zentrum München, Munich, Germany. · Department of Surgery, University of Heidelberg, Heidelberg, Germany. ·Gut · Pubmed #25601637.

ABSTRACT: OBJECTIVE: Oncogenic Kras-activated robust Mek/Erk signals phosphorylate to the tuberous sclerosis complex (Tsc) and deactivates mammalian target of rapamycin (mTOR) suppression in pancreatic ductal adenocarcinoma (PDAC); however, Mek and mTOR inhibitors alone have demonstrated minimal clinical antitumor activity. DESIGN: We generated transgenic mouse models in which mTOR was hyperactivated either through the Kras/Mek/Erk cascade, by loss of Pten or through Tsc1 haploinsufficiency. Primary cancer cells were isolated from mouse tumours. Oncogenic signalling was assessed in vitro and in vivo, with and without single or multiple targeted molecule inhibition. Transcriptional profiling was used to identify biomarkers predictive of the underlying pathway alterations and of therapeutic response. Results from the preclinical models were confirmed on human material. RESULTS: Reduction of Tsc1 function facilitated activation of Kras/Mek/Erk-mediated mTOR signalling, which promoted the development of metastatic PDACs. Single inhibition of mTOR or Mek elicited strong feedback activation of Erk or Akt, respectively. Only dual inhibition of Mek and PI3K reduced mTOR activity and effectively induced cancer cell apoptosis. Analysis of downstream targets demonstrated that oncogenic activity of the Mek/Erk/Tsc/mTOR axis relied on Aldh1a3 function. Moreover, in clinical PDAC samples, ALDH1A3 specifically labelled an aggressive subtype. CONCLUSIONS: These results advance our understanding of Mek/Erk-driven mTOR activation and its downstream targets in PDAC, and provide a mechanistic rationale for effective therapeutic matching for Aldh1a3-positive PDACs.