Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Göran Hallmans
Based on 11 articles published since 2010
(Why 11 articles?)
||||

Between 2010 and 2020, G. Hallmans wrote the following 11 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: A nested case-control study. 2017

Huang, Jiaqi / Zagai, Ulrika / Hallmans, Göran / Nyrén, Olof / Engstrand, Lars / Stolzenberg-Solomon, Rachael / Duell, Eric J / Overvad, Kim / Katzke, Verena A / Kaaks, Rudolf / Jenab, Mazda / Park, Jin Young / Murillo, Raul / Trichopoulou, Antonia / Lagiou, Pagona / Bamia, Christina / Bradbury, Kathryn E / Riboli, Elio / Aune, Dagfinn / Tsilidis, Konstantinos K / Capellá, Gabriel / Agudo, Antonio / Krogh, Vittorio / Palli, Domenico / Panico, Salvatore / Weiderpass, Elisabete / Tjønneland, Anne / Olsen, Anja / Martínez, Begoña / Redondo-Sanchez, Daniel / Chirlaque, Maria-Dolores / Hm Peeters, Petra / Regnér, Sara / Lindkvist, Björn / Naccarati, Alessio / Ardanaz, Eva / Larrañaga, Nerea / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Barré, Amélie / Bueno-de-Mesquita, H B As / Ye, Weimin. ·Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden. · Department of Public Health and Clinical Nutrition, Umeå University, Umeå, Sweden. · Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. · Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Prevention and Implementation Group, Section of Early Detection and Prevention, Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. · Translational Research Laboratory, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain. · Unit of Nutrition and Cancer. Cancer Epidemiology Research Program. Catalan Institute of Oncology-IDIBELL. L'Hospitalet de Llobregat, Barcelona, Spain. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Dipartimento di medicina clinica e chirurgia Federico II, Naples, Italy. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, Granada, Spain. · CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs, Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden. · Molecular and Genetic Epidemiology Unit, Human Genetics Foundation, Turin, Italy. · Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Spain. · Hormones and Women's Health Team, INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Villejuif, F-94805, France. · Université Paris Sud, UMRS 1018, Villejuif, F-94805, France. · Institut Gustave Roussy, Villejuif, F-94805, France. · Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France. · Université Paris Sud and Gastroenterology Unit, Hôpitaux Universitaires Paris Sud, CHU de Bicêtre, AP-HP, Le Kremlin Bicêtre, France. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · The Medical Biobank at Umeå University, Umeå, Sweden. ·Int J Cancer · Pubmed #28032715.

ABSTRACT: The association between H. pylori infection and pancreatic cancer risk remains controversial. We conducted a nested case-control study with 448 pancreatic cancer cases and their individually matched control subjects, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, to determine whether there was an altered pancreatic cancer risk associated with H. pylori infection and chronic corpus atrophic gastritis. Conditional logistic regression models were applied to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs), adjusted for matching factors and other potential confounders. Our results showed that pancreatic cancer risk was neither associated with H. pylori seropositivity (OR = 0.96; 95% CI: 0.70, 1.31) nor CagA seropositivity (OR = 1.07; 95% CI: 0.77, 1.48). We also did not find any excess risk among individuals seropositive for H. pylori but seronegative for CagA, compared with the group seronegative for both antibodies (OR = 0.94; 95% CI: 0.63, 1.38). However, we found that chronic corpus atrophic gastritis was non-significantly associated with an increased pancreatic cancer risk (OR = 1.35; 95% CI: 0.77, 2.37), and although based on small numbers, the excess risk was particularly marked among individuals seronegative for both H. pylori and CagA (OR = 5.66; 95% CI: 1.59, 20.19, p value for interaction < 0.01). Our findings provided evidence supporting the null association between H. pylori infection and pancreatic cancer risk in western European populations. However, the suggested association between chronic corpus atrophic gastritis and pancreatic cancer risk warrants independent verification in future studies, and, if confirmed, further studies on the underlying mechanisms.

2 Article Genome-wide association study of survival in patients with pancreatic adenocarcinoma. 2014

Wu, Chen / Kraft, Peter / Stolzenberg-Solomon, Rachael / Steplowski, Emily / Brotzman, Michelle / Xu, Mousheng / Mudgal, Poorva / Amundadottir, Laufey / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Gross, Myron / Helzlsouer, Kathy / Jacobs, Eric J / Kooperberg, Charles / Petersen, Gloria M / Zheng, Wei / Albanes, Demetrius / Boutron-Ruault, Marie-Christine / Buring, Julie E / Canzian, Federico / Cao, Guangwen / Duell, Eric J / Elena, Joanne W / Gaziano, J Michael / Giovannucci, Edward L / Hallmans, Goran / Hutchinson, Amy / Hunter, David J / Jenab, Mazda / Jiang, Guoliang / Khaw, Kay-Tee / LaCroix, Andrea / Li, Zhaoshen / Mendelsohn, Julie B / Panico, Salvatore / Patel, Alpa V / Qian, Zhi Rong / Riboli, Elio / Sesso, Howard / Shen, Hongbing / Shu, Xiao-Ou / Tjonneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Virtamo, Jarmo / Visvanathan, Kala / Wactawski-Wende, Jean / Wang, Chengfeng / Yu, Kai / Zeleniuch-Jacquotte, Anne / Chanock, Stephen / Hoover, Robert / Hartge, Patricia / Fuchs, Charles S / Lin, Dongxin / Wolpin, Brian M. ·Department of Epidemiology, Harvard School of Public Health, , Boston, Massachusetts, USA. ·Gut · Pubmed #23180869.

ABSTRACT: BACKGROUND AND OBJECTIVE: Survival of patients with pancreatic adenocarcinoma is limited and few prognostic factors are known. We conducted a two-stage genome-wide association study (GWAS) to identify germline variants associated with survival in patients with pancreatic adenocarcinoma. METHODS: We analysed overall survival in relation to single nucleotide polymorphisms (SNPs) among 1005 patients from two large GWAS datasets, PanScan I and ChinaPC. Cox proportional hazards regression was used in an additive genetic model with adjustment for age, sex, clinical stage and the top four principal components of population stratification. The first stage included 642 cases of European ancestry (PanScan), from which the top SNPs (p≤10(-5)) were advanced to a joint analysis with 363 additional patients from China (ChinaPC). RESULTS: In the first stage of cases of European descent, the top-ranked loci were at chromosomes 11p15.4, 18p11.21 and 1p36.13, tagged by rs12362504 (p=1.63×10(-7)), rs981621 (p=1.65×10(-7)) and rs16861827 (p=3.75×10(-7)), respectively. 131 SNPs with p≤10(-5) were advanced to a joint analysis with cases from the ChinaPC study. In the joint analysis, the top-ranked SNP was rs10500715 (minor allele frequency, 0.37; p=1.72×10(-7)) on chromosome 11p15.4, which is intronic to the SET binding factor 2 (SBF2) gene. The HR (95% CI) for death was 0.74 (0.66 to 0.84) in PanScan I, 0.79 (0.65 to 0.97) in ChinaPC and 0.76 (0.68 to 0.84) in the joint analysis. CONCLUSIONS: Germline genetic variation in the SBF2 locus was associated with overall survival in patients with pancreatic adenocarcinoma of European and Asian ancestry. This association should be investigated in additional large patient cohorts.

3 Article An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. 2013

Klein, Alison P / Lindström, Sara / Mendelsohn, Julie B / Steplowski, Emily / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Fuchs, Charles S / Gallinger, Steven / Gross, Myron / Helzlsouer, Kathy / Holly, Elizabeth A / Jacobs, Eric J / Lacroix, Andrea / Li, Donghui / Mandelson, Margaret T / Olson, Sara H / Petersen, Gloria M / Risch, Harvey A / Stolzenberg-Solomon, Rachael Z / Zheng, Wei / Amundadottir, Laufey / Albanes, Demetrius / Allen, Naomi E / Bamlet, William R / Boutron-Ruault, Marie-Christine / Buring, Julie E / Bracci, Paige M / Canzian, Federico / Clipp, Sandra / Cotterchio, Michelle / Duell, Eric J / Elena, Joanne / Gaziano, J Michael / Giovannucci, Edward L / Goggins, Michael / Hallmans, Göran / Hassan, Manal / Hutchinson, Amy / Hunter, David J / Kooperberg, Charles / Kurtz, Robert C / Liu, Simin / Overvad, Kim / Palli, Domenico / Patel, Alpa V / Rabe, Kari G / Shu, Xiao-Ou / Slimani, Nadia / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Van Den Eeden, Stephen K / Vineis, Paolo / Virtamo, Jarmo / Wactawski-Wende, Jean / Wolpin, Brian M / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Chanock, Stephen J / Hoover, Robert N / Hartge, Patricia / Kraft, Peter. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America ; Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America ; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America. ·PLoS One · Pubmed #24058443.

ABSTRACT: PURPOSE: We developed an absolute risk model to identify individuals in the general population at elevated risk of pancreatic cancer. PATIENTS AND METHODS: Using data on 3,349 cases and 3,654 controls from the PanScan Consortium, we developed a relative risk model for men and women of European ancestry based on non-genetic and genetic risk factors for pancreatic cancer. We estimated absolute risks based on these relative risks and population incidence rates. RESULTS: Our risk model included current smoking (multivariable adjusted odds ratio (OR) and 95% confidence interval: 2.20 [1.84-2.62]), heavy alcohol use (>3 drinks/day) (OR: 1.45 [1.19-1.76]), obesity (body mass index >30 kg/m(2)) (OR: 1.26 [1.09-1.45]), diabetes >3 years (nested case-control OR: 1.57 [1.13-2.18], case-control OR: 1.80 [1.40-2.32]), family history of pancreatic cancer (OR: 1.60 [1.20-2.12]), non-O ABO genotype (AO vs. OO genotype) (OR: 1.23 [1.10-1.37]) to (BB vs. OO genotype) (OR 1.58 [0.97-2.59]), rs3790844(chr1q32.1) (OR: 1.29 [1.19-1.40]), rs401681(5p15.33) (OR: 1.18 [1.10-1.26]) and rs9543325(13q22.1) (OR: 1.27 [1.18-1.36]). The areas under the ROC curve for risk models including only non-genetic factors, only genetic factors, and both non-genetic and genetic factors were 58%, 57% and 61%, respectively. We estimate that fewer than 3/1,000 U.S. non-Hispanic whites have more than a 5% predicted lifetime absolute risk. CONCLUSION: Although absolute risk modeling using established risk factors may help to identify a group of individuals at higher than average risk of pancreatic cancer, the immediate clinical utility of our model is limited. However, a risk model can increase awareness of the various risk factors for pancreatic cancer, including modifiable behaviors.

4 Article Dietary intake of acrylamide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. 2013

Obón-Santacana, M / Slimani, N / Lujan-Barroso, L / Travier, N / Hallmans, G / Freisling, H / Ferrari, P / Boutron-Ruault, M C / Racine, A / Clavel, F / Saieva, C / Pala, V / Tumino, R / Mattiello, A / Vineis, P / Argüelles, M / Ardanaz, E / Amiano, P / Navarro, C / Sánchez, M J / Molina Montes, E / Key, T / Khaw, K-T / Wareham, N / Peeters, P H / Trichopoulou, A / Bamia, C / Trichopoulos, D / Boeing, H / Kaaks, R / Katzke, V / Ye, W / Sund, M / Ericson, U / Wirfält, E / Overvad, K / Tjønneland, A / Olsen, A / Skeie, G / Åsli, L A / Weiderpass, E / Riboli, E / Bueno-de-Mesquita, H B / Duell, E J. ·Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. ·Ann Oncol · Pubmed #23857962.

ABSTRACT: BACKGROUND: In 1994, acrylamide (AA) was classified as a probable human carcinogen by the International Agency for Research on Cancer. In 2002, AA was discovered at relatively high concentrations in some starchy, plant-based foods cooked at high temperatures. PATIENTS AND METHODS: A prospective analysis was conducted to evaluate the association between the dietary intake of AA and ductal adenocarcinoma of the exocrine pancreatic cancer (PC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort using Cox regression modeling. EPIC includes >500,000 men and women aged 35-75 at enrollment from 10 European countries. AA intake was estimated for each participant by combining questionnaire-based food consumption data with a harmonized AA database derived from the EU monitoring database of AA levels in foods, and evaluated in quintiles and continuously. RESULTS: After a mean follow-up of 11 years, 865 first incident adenocarcinomas of the exocrine pancreas were observed and included in the present analysis. At baseline, the mean dietary AA intake in EPIC was 26.22 µg/day. No overall association was found between continuous or quintiles of dietary AA intake and PC risk in EPIC (HR:0.95, 95%CI:0.89-1.01 per 10 µg/day). There was no effect measure modification by smoking status, sex, diabetes, alcohol intake or geographic region. However, there was an inverse association (HR: 0.73, 95% CI: 0.61-0.88 per 10 µg/day) between AA intake and PC risk in obese persons as defined using the body mass index (BMI, ≥ 30 kg/m(2)), but not when body fatness was defined using waist and hip circumference or their ratio. CONCLUSIONS: Dietary intake of AA was not associated with an increased risk of PC in the EPIC cohort.

5 Article Polymorphisms in genes related to one-carbon metabolism are not related to pancreatic cancer in PanScan and PanC4. 2013

Leenders, Max / Bhattacharjee, Samsiddhi / Vineis, Paolo / Stevens, Victoria / Bueno-de-Mesquita, H Bas / Shu, Xiao-Ou / Amundadottir, Laufey / Gross, Myron / Tobias, Geoffrey S / Wactawski-Wende, Jean / Arslan, Alan A / Duell, Eric J / Fuchs, Charles S / Gallinger, Steven / Hartge, Patricia / Hoover, Robert N / Holly, Elizabeth A / Jacobs, Eric J / Klein, Alison P / Kooperberg, Charles / LaCroix, Andrea / Li, Donghui / Mandelson, Margaret T / Olson, Sara H / Petersen, Gloria / Risch, Harvey A / Yu, Kai / Wolpin, Brian M / Zheng, Wei / Agalliu, Ilir / Albanes, Demetrius / Boutron-Ruault, Marie-Christine / Bracci, Paige M / Buring, Julie E / Canzian, Federico / Chang, Kenneth / Chanock, Stephen J / Cotterchio, Michelle / Gaziano, J Michael / Giovanucci, Edward L / Goggins, Michael / Hallmans, Göran / Hankinson, Susan E / Hoffman-Bolton, Judith A / Hunter, David J / Hutchinson, Amy / Jacobs, Kevin B / Jenab, Mazda / Khaw, Kay-Tee / Kraft, Peter / Krogh, Vittorio / Kurtz, Robert C / McWilliams, Robert R / Mendelsohn, Julie B / Patel, Alpa V / Rabe, Kari G / Riboli, Elio / Tjønneland, Anne / Trichopoulos, Dimitrios / Virtamo, Jarmo / Visvanathan, Kala / Elena, Joanne W / Yu, Herbert / Zeleniuch-Jacquotte, Anne / Stolzenberg-Solomon, Rachael Z. ·Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK. M.Leenders-6@umcutrecht.nl ·Cancer Causes Control · Pubmed #23334854.

ABSTRACT: PURPOSE: The evidence of a relation between folate intake and one-carbon metabolism (OCM) with pancreatic cancer (PanCa) is inconsistent. In this study, the association between genes and single-nucleotide polymorphisms (SNPs) related to OCM and PanCa was assessed. METHODS: Using biochemical knowledge of the OCM pathway, we identified thirty-seven genes and 834 SNPs to examine in association with PanCa. Our study included 1,408 cases and 1,463 controls nested within twelve cohorts (PanScan). The ten SNPs and five genes with lowest p values (<0.02) were followed up in 2,323 cases and 2,340 controls from eight case-control studies (PanC4) that participated in PanScan2. The correlation of SNPs with metabolite levels was assessed for 649 controls from the European Prospective Investigation into Cancer and Nutrition. RESULTS: When both stages were combined, we observed suggestive associations with PanCa for rs10887710 (MAT1A) (OR 1.13, 95 %CI 1.04-1.23), rs1552462 (SYT9) (OR 1.27, 95 %CI 1.02-1.59), and rs7074891 (CUBN) (OR 1.91, 95 %CI 1.12-3.26). After correcting for multiple comparisons, no significant associations were observed in either the first or second stage. The three suggested SNPs showed no correlations with one-carbon biomarkers. CONCLUSIONS: This is the largest genetic study to date to examine the relation between germline variations in OCM-related genes polymorphisms and the risk of PanCa. Suggestive evidence for an association between polymorphisms and PanCa was observed among the cohort-nested studies, but this did not replicate in the case-control studies. Our results do not strongly support the hypothesis that genes related to OCM play a role in pancreatic carcinogenesis.

6 Article Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. 2013

Elena, Joanne W / Steplowski, Emily / Yu, Kai / Hartge, Patricia / Tobias, Geoffrey S / Brotzman, Michelle J / Chanock, Stephen J / Stolzenberg-Solomon, Rachael Z / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Helzlsouer, Kathy / Jacobs, Eric J / LaCroix, Andrea / Petersen, Gloria / Zheng, Wei / Albanes, Demetrius / Allen, Naomi E / Amundadottir, Laufey / Bao, Ying / Boeing, Heiner / Boutron-Ruault, Marie-Christine / Buring, Julie E / Gaziano, J Michael / Giovannucci, Edward L / Duell, Eric J / Hallmans, Göran / Howard, Barbara V / Hunter, David J / Hutchinson, Amy / Jacobs, Kevin B / Kooperberg, Charles / Kraft, Peter / Mendelsohn, Julie B / Michaud, Dominique S / Palli, Domenico / Phillips, Lawrence S / Overvad, Kim / Patel, Alpa V / Sansbury, Leah / Shu, Xiao-Ou / Simon, Michael S / Slimani, Nadia / Trichopoulos, Dimitrios / Visvanathan, Kala / Virtamo, Jarmo / Wolpin, Brian M / Zeleniuch-Jacquotte, Anne / Fuchs, Charles S / Hoover, Robert N / Gross, Myron. ·Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA. elenajw@mail.nih.gov ·Cancer Causes Control · Pubmed #23112111.

ABSTRACT: PURPOSE: Diabetes is a suspected risk factor for pancreatic cancer, but questions remain about whether it is a risk factor or a result of the disease. This study prospectively examined the association between diabetes and the risk of pancreatic adenocarcinoma in pooled data from the NCI pancreatic cancer cohort consortium (PanScan). METHODS: The pooled data included 1,621 pancreatic adenocarcinoma cases and 1,719 matched controls from twelve cohorts using a nested case-control study design. Subjects who were diagnosed with diabetes near the time (<2 years) of pancreatic cancer diagnosis were excluded from all analyses. All analyses were adjusted for age, race, gender, study, alcohol use, smoking, BMI, and family history of pancreatic cancer. RESULTS: Self-reported diabetes was associated with a forty percent increased risk of pancreatic cancer (OR = 1.40, 95 % CI: 1.07, 1.84). The association differed by duration of diabetes; risk was highest for those with a duration of 2-8 years (OR = 1.79, 95 % CI: 1.25, 2.55); there was no association for those with 9+ years of diabetes (OR = 1.02, 95 % CI: 0.68, 1.52). CONCLUSIONS: These findings provide support for a relationship between diabetes and pancreatic cancer risk. The absence of association in those with the longest duration of diabetes may reflect hypoinsulinemia and warrants further investigation.

7 Article Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. 2012

Li, Donghui / Duell, Eric J / Yu, Kai / Risch, Harvey A / Olson, Sara H / Kooperberg, Charles / Wolpin, Brian M / Jiao, Li / Dong, Xiaoqun / Wheeler, Bill / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Fuchs, Charles S / Gallinger, Steven / Gross, Myron / Hartge, Patricia / Hoover, Robert N / Holly, Elizabeth A / Jacobs, Eric J / Klein, Alison P / LaCroix, Andrea / Mandelson, Margaret T / Petersen, Gloria / Zheng, Wei / Agalliu, Ilir / Albanes, Demetrius / Boutron-Ruault, Marie-Christine / Bracci, Paige M / Buring, Julie E / Canzian, Federico / Chang, Kenneth / Chanock, Stephen J / Cotterchio, Michelle / Gaziano, J Michael / Giovannucci, Edward L / Goggins, Michael / Hallmans, Göran / Hankinson, Susan E / Hoffman Bolton, Judith A / Hunter, David J / Hutchinson, Amy / Jacobs, Kevin B / Jenab, Mazda / Khaw, Kay-Tee / Kraft, Peter / Krogh, Vittorio / Kurtz, Robert C / McWilliams, Robert R / Mendelsohn, Julie B / Patel, Alpa V / Rabe, Kari G / Riboli, Elio / Shu, Xiao-Ou / Tjønneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Virtamo, Jarmo / Visvanathan, Kala / Watters, Joanne / Yu, Herbert / Zeleniuch-Jacquotte, Anne / Amundadottir, Laufey / Stolzenberg-Solomon, Rachael Z. ·Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA. ·Carcinogenesis · Pubmed #22523087.

ABSTRACT: Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case-control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10(-6), 1.6 × 10(-5), 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10(-5)), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H.pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer.

8 Article Variant ABO blood group alleles, secretor status, and risk of pancreatic cancer: results from the pancreatic cancer cohort consortium. 2010

Wolpin, Brian M / Kraft, Peter / Xu, Mousheng / Steplowski, Emily / Olsson, Martin L / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Gross, Myron / Helzlsouer, Kathy / Jacobs, Eric J / LaCroix, Andrea / Petersen, Gloria / Stolzenberg-Solomon, Rachael Z / Zheng, Wei / Albanes, Demetrius / Allen, Naomi E / Amundadottir, Laufey / Austin, Melissa A / Boutron-Ruault, Marie-Christine / Buring, Julie E / Canzian, Federico / Chanock, Stephen J / Gaziano, J Michael / Giovannucci, Edward L / Hallmans, Göran / Hankinson, Susan E / Hoover, Robert N / Hunter, David J / Hutchinson, Amy / Jacobs, Kevin B / Kooperberg, Charles / Mendelsohn, Julie B / Michaud, Dominique S / Overvad, Kim / Patel, Alpa V / Sanchéz, Maria-José / Sansbury, Leah / Shu, Xiao-Ou / Slimani, Nadia / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Vineis, Paolo / Visvanathan, Kala / Virtamo, Jarmo / Wactawski-Wende, Jean / Watters, Joanne / Yu, Kai / Zeleniuch-Jacquotte, Anne / Hartge, Patricia / Fuchs, Charles S. ·Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA. bwolpin@partners.org ·Cancer Epidemiol Biomarkers Prev · Pubmed #20971884.

ABSTRACT: BACKGROUND: Subjects with non-O ABO blood group alleles have increased risk of pancreatic cancer. Glycosyltransferase activity is greater for the A(1) versus A(2) variant, whereas O01 and O02 variants are nonfunctioning. We hypothesized: 1) A(1) allele would confer greater risk than A(2) allele, 2) protective effect of the O allele would be equivalent for O01 and O02 variants, 3) secretor phenotype would modify the association with risk. METHODS: We determined ABO variants and secretor phenotype from single nucleotide polymorphisms in ABO and FUT2 genes in 1,533 cases and 1,582 controls from 12 prospective cohort studies. Adjusted odds ratios (OR) for pancreatic cancer were calculated using logistic regression. RESULTS: An increased risk was observed in participants with A(1) but not A(2) alleles. Compared with subjects with genotype O/O, genotypes A(2)/O, A(2)/A(1), A(1)/O, and A(1)/A(1) had ORs of 0.96 (95% CI, 0.72-1.26), 1.46 (95% CI, 0.98-2.17), 1.48 (95% CI, 1.23-1.78), and 1.71 (95% CI, 1.18-2.47). Risk was similar for O01 and O02 variant O alleles. Compared with O01/O01, the ORs for each additional allele of O02, A(1), and A(2) were 1.00 (95% CI, 0.87-1.14), 1.38 (95% CI, 1.20-1.58), and 0.96 (95% CI, 0.77-1.20); P, O01 versus O02 = 0.94, A(1) versus A(2) = 0.004. Secretor phenotype was not an effect modifier (P-interaction = 0.63). CONCLUSIONS: Among participants in a large prospective cohort consortium, ABO allele subtypes corresponding to increased glycosyltransferase activity were associated with increased pancreatic cancer risk. IMPACT: These data support the hypothesis that ABO glycosyltransferase activity influences pancreatic cancer risk rather than actions of other nearby genes on chromosome 9q34.

9 Article Metabolic factors and the risk of pancreatic cancer: a prospective analysis of almost 580,000 men and women in the Metabolic Syndrome and Cancer Project. 2010

Johansen, Dorthe / Stocks, Tanja / Jonsson, Håkan / Lindkvist, Björn / Björge, Tone / Concin, Hans / Almquist, Martin / Häggström, Christel / Engeland, Anders / Ulmer, Hanno / Hallmans, Göran / Selmer, Randi / Nagel, Gabriele / Tretli, Steinar / Stattin, Pär / Manjer, Jonas. ·Department of Surgery, Lund University, Malmö, Sweden. dorthe.johansen@med.lu.se ·Cancer Epidemiol Biomarkers Prev · Pubmed #20826833.

ABSTRACT: BACKGROUND: The aim of this study was to investigate the association between factors in metabolic syndrome (MetS; single and combined) and the risk of pancreatic cancer. METHODS: The Metabolic Syndrome and Cancer Project is a pooled cohort containing data on body mass index, blood pressure, and blood levels of glucose, cholesterol, and triglycerides. During follow-up, 862 individuals were diagnosed with pancreatic cancer. Cox proportional hazards analysis was used to calculate relative risks (RR) with 95% confidence intervals using the above-mentioned factors categorized into quintiles and transformed into z-scores. All z-scores were summarized and a second z-transformation creating a composite z-score for MetS was done. All risk estimates were calibrated to correct for a regression dilution bias. RESULTS: The trend over quintiles was positively associated with the risk of pancreatic cancer for mid-blood pressure (mid-BP) and glucose in men and for body mass index, mid-BP, and glucose in women. The z-score for the adjusted mid-BP (RR, 1.10; 1.01-1.20) and the calibrated z-score for glucose (RR, 1.37; 1.14-1.34) were positively associated with pancreatic cancer in men. In women, a positive association was found for calibrated z-scores for mid-BP (RR, 1.34; 1.08-1.66), for the calibrated z-score for glucose (RR, 1.98; 1.41-2.76), and for the composite z-score for MetS (RR, 1.58; 1.34-1.87). CONCLUSION: Our study adds further evidence to a possible link between abnormal glucose metabolism and risk of pancreatic cancer. IMPACT: To our knowledge, this is the first study on MetS and pancreatic cancer using prediagnostic measurements of the examined factors.

10 Article Pancreatic cancer risk and ABO blood group alleles: results from the pancreatic cancer cohort consortium. 2010

Wolpin, Brian M / Kraft, Peter / Gross, Myron / Helzlsouer, Kathy / Bueno-de-Mesquita, H Bas / Steplowski, Emily / Stolzenberg-Solomon, Rachael Z / Arslan, Alan A / Jacobs, Eric J / Lacroix, Andrea / Petersen, Gloria / Zheng, Wei / Albanes, Demetrius / Allen, Naomi E / Amundadottir, Laufey / Anderson, Garnet / Boutron-Ruault, Marie-Christine / Buring, Julie E / Canzian, Federico / Chanock, Stephen J / Clipp, Sandra / Gaziano, John Michael / Giovannucci, Edward L / Hallmans, Göran / Hankinson, Susan E / Hoover, Robert N / Hunter, David J / Hutchinson, Amy / Jacobs, Kevin / Kooperberg, Charles / Lynch, Shannon M / Mendelsohn, Julie B / Michaud, Dominique S / Overvad, Kim / Patel, Alpa V / Rajkovic, Aleksandar / Sanchéz, Maria-José / Shu, Xiao-Ou / Slimani, Nadia / Thomas, Gilles / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Vineis, Paolo / Virtamo, Jarmo / Wactawski-Wende, Jean / Yu, Kai / Zeleniuch-Jacquotte, Anne / Hartge, Patricia / Fuchs, Charles S. ·Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA. bwolpin@partners.org ·Cancer Res · Pubmed #20103627.

ABSTRACT: A recent genome-wide association study (PanScan) identified significant associations at the ABO gene locus with risk of pancreatic cancer, but the influence of specific ABO genotypes remains unknown. We determined ABO genotypes (OO, AO, AA, AB, BO, and BB) in 1,534 cases and 1,583 controls from 12 prospective cohorts in PanScan, grouping participants by genotype-derived serologic blood type (O, A, AB, and B). Adjusted odds ratios (ORs) for pancreatic cancer by ABO alleles were calculated using logistic regression. Compared with blood type O, the ORs for pancreatic cancer in subjects with types A, AB, and B were 1.38 [95% confidence interval (95% CI), 1.18-1.62], 1.47 (95% CI, 1.07-2.02), and 1.53 (95% CI, 1.21-1.92), respectively. The incidence rates for blood types O, A, AB, and B were 28.9, 39.9, 41.8, and 44.5 cases per 100,000 subjects per year. An increase in risk was noted with the addition of each non-O allele. Compared with OO genotype, subjects with AO and AA genotype had ORs of 1.33 (95% CI, 1.13-1.58) and 1.61 (95% CI, 1.22-2.18), whereas subjects with BO and BB genotypes had ORs of 1.45 (95% CI, 1.14-1.85) and 2.42 (1.28-4.57). The population attributable fraction for non-O blood type was 19.5%. In a joint model with smoking, current smokers with non-O blood type had an adjusted OR of 2.68 (95% CI, 2.03-3.54) compared with nonsmokers of blood type O. We concluded that ABO genotypes were significantly associated with pancreatic cancer risk.

11 Article A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. 2010

Petersen, Gloria M / Amundadottir, Laufey / Fuchs, Charles S / Kraft, Peter / Stolzenberg-Solomon, Rachael Z / Jacobs, Kevin B / Arslan, Alan A / Bueno-de-Mesquita, H Bas / Gallinger, Steven / Gross, Myron / Helzlsouer, Kathy / Holly, Elizabeth A / Jacobs, Eric J / Klein, Alison P / LaCroix, Andrea / Li, Donghui / Mandelson, Margaret T / Olson, Sara H / Risch, Harvey A / Zheng, Wei / Albanes, Demetrius / Bamlet, William R / Berg, Christine D / Boutron-Ruault, Marie-Christine / Buring, Julie E / Bracci, Paige M / Canzian, Federico / Clipp, Sandra / Cotterchio, Michelle / de Andrade, Mariza / Duell, Eric J / Gaziano, J Michael / Giovannucci, Edward L / Goggins, Michael / Hallmans, Göran / Hankinson, Susan E / Hassan, Manal / Howard, Barbara / Hunter, David J / Hutchinson, Amy / Jenab, Mazda / Kaaks, Rudolf / Kooperberg, Charles / Krogh, Vittorio / Kurtz, Robert C / Lynch, Shannon M / McWilliams, Robert R / Mendelsohn, Julie B / Michaud, Dominique S / Parikh, Hemang / Patel, Alpa V / Peeters, Petra H M / Rajkovic, Aleksandar / Riboli, Elio / Rodriguez, Laudina / Seminara, Daniela / Shu, Xiao-Ou / Thomas, Gilles / Tjønneland, Anne / Tobias, Geoffrey S / Trichopoulos, Dimitrios / Van Den Eeden, Stephen K / Virtamo, Jarmo / Wactawski-Wende, Jean / Wang, Zhaoming / Wolpin, Brian M / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Fraumeni, Joseph F / Hoover, Robert N / Hartge, Patricia / Chanock, Stephen J. ·Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA. ·Nat Genet · Pubmed #20101243.

ABSTRACT: We conducted a genome-wide association study of pancreatic cancer in 3,851 affected individuals (cases) and 3,934 unaffected controls drawn from 12 prospective cohort studies and 8 case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P = 3.27 x 10(-11), per-allele odds ratio (OR) 1.26, 95% CI 1.18-1.35) and rs9564966 (P = 5.86 x 10(-8), per-allele OR 1.21, 95% CI 1.13-1.30), map to a nongenic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2, and the strongest signal was at rs3790844 (P = 2.45 x 10(-10), per-allele OR 0.77, 95% CI 0.71-0.84). A single SNP, rs401681 (P = 3.66 x 10(-7), per-allele OR 1.19, 95% CI 1.11-1.27), maps to the CLPTM1L-TERT locus on 5p15.33, which is associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies.