Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Richard A. Gibbs
Based on 13 articles published since 2010
(Why 13 articles?)
||||

Between 2010 and 2020, R. Gibbs wrote the following 13 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Genetic and molecular alterations in pancreatic cancer: implications for personalized medicine. 2013

Fang, Yantian / Yao, Qizhi / Chen, Zongyou / Xiang, Jianbin / William, Fisher E / Gibbs, Richard A / Chen, Changyi. ·Molecular Surgeon Research Center, Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, U.S.A. and Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China. ·Med Sci Monit · Pubmed #24172537.

ABSTRACT: Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer.

2 Article Whole-genome landscape of pancreatic neuroendocrine tumours. 2017

Scarpa, Aldo / Chang, David K / Nones, Katia / Corbo, Vincenzo / Patch, Ann-Marie / Bailey, Peter / Lawlor, Rita T / Johns, Amber L / Miller, David K / Mafficini, Andrea / Rusev, Borislav / Scardoni, Maria / Antonello, Davide / Barbi, Stefano / Sikora, Katarzyna O / Cingarlini, Sara / Vicentini, Caterina / McKay, Skye / Quinn, Michael C J / Bruxner, Timothy J C / Christ, Angelika N / Harliwong, Ivon / Idrisoglu, Senel / McLean, Suzanne / Nourse, Craig / Nourbakhsh, Ehsan / Wilson, Peter J / Anderson, Matthew J / Fink, J Lynn / Newell, Felicity / Waddell, Nick / Holmes, Oliver / Kazakoff, Stephen H / Leonard, Conrad / Wood, Scott / Xu, Qinying / Nagaraj, Shivashankar Hiriyur / Amato, Eliana / Dalai, Irene / Bersani, Samantha / Cataldo, Ivana / Dei Tos, Angelo P / Capelli, Paola / Davì, Maria Vittoria / Landoni, Luca / Malpaga, Anna / Miotto, Marco / Whitehall, Vicki L J / Leggett, Barbara A / Harris, Janelle L / Harris, Jonathan / Jones, Marc D / Humphris, Jeremy / Chantrill, Lorraine A / Chin, Venessa / Nagrial, Adnan M / Pajic, Marina / Scarlett, Christopher J / Pinho, Andreia / Rooman, Ilse / Toon, Christopher / Wu, Jianmin / Pinese, Mark / Cowley, Mark / Barbour, Andrew / Mawson, Amanda / Humphrey, Emily S / Colvin, Emily K / Chou, Angela / Lovell, Jessica A / Jamieson, Nigel B / Duthie, Fraser / Gingras, Marie-Claude / Fisher, William E / Dagg, Rebecca A / Lau, Loretta M S / Lee, Michael / Pickett, Hilda A / Reddel, Roger R / Samra, Jaswinder S / Kench, James G / Merrett, Neil D / Epari, Krishna / Nguyen, Nam Q / Zeps, Nikolajs / Falconi, Massimo / Simbolo, Michele / Butturini, Giovanni / Van Buren, George / Partelli, Stefano / Fassan, Matteo / Anonymous6880896 / Khanna, Kum Kum / Gill, Anthony J / Wheeler, David A / Gibbs, Richard A / Musgrove, Elizabeth A / Bassi, Claudio / Tortora, Giampaolo / Pederzoli, Paolo / Pearson, John V / Waddell, Nicola / Biankin, Andrew V / Grimmond, Sean M. ·ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37134, Italy. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. · QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · Medical Oncology, University and Hospital Trust of Verona, Verona, Italy. · Department of Pathology, General Hospital of Treviso, Department of Medicine, University of Padua, Italy. · Department of Medicine, Section of Endocrinology, University and Hospital Trust of Verona, Verona, Italy. · The University of Queensland, School of Medicine, Brisbane 4006, Australia. · Pathology Queensland, Brisbane 4006, Australia. · Royal Brisbane and Women's Hospital, Department of Gastroenterology and Hepatology, Brisbane 4006, Australia. · Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. · School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · Department of Anatomical Pathology. St Vincent's Hospital, Sydney, New South Wales 2010, Australia. · Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. · Department of Pathology, Queen Elizabeth University Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. · Michael E. DeBakey Department of Surgery and The Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, USA. · Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia. · Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales 2145, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. · University of Sydney. Sydney, New South Wales 2006, Australia. · Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. · School of Medicine, Western Sydney University, Penrith, New South Wales 2175, Australia. · Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia 6009, Australia. · St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. · Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. · University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, 3010, Victoria, Australia. ·Nature · Pubmed #28199314.

ABSTRACT: The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

3 Article Genomic analyses identify molecular subtypes of pancreatic cancer. 2016

Bailey, Peter / Chang, David K / Nones, Katia / Johns, Amber L / Patch, Ann-Marie / Gingras, Marie-Claude / Miller, David K / Christ, Angelika N / Bruxner, Tim J C / Quinn, Michael C / Nourse, Craig / Murtaugh, L Charles / Harliwong, Ivon / Idrisoglu, Senel / Manning, Suzanne / Nourbakhsh, Ehsan / Wani, Shivangi / Fink, Lynn / Holmes, Oliver / Chin, Venessa / Anderson, Matthew J / Kazakoff, Stephen / Leonard, Conrad / Newell, Felicity / Waddell, Nick / Wood, Scott / Xu, Qinying / Wilson, Peter J / Cloonan, Nicole / Kassahn, Karin S / Taylor, Darrin / Quek, Kelly / Robertson, Alan / Pantano, Lorena / Mincarelli, Laura / Sanchez, Luis N / Evers, Lisa / Wu, Jianmin / Pinese, Mark / Cowley, Mark J / Jones, Marc D / Colvin, Emily K / Nagrial, Adnan M / Humphrey, Emily S / Chantrill, Lorraine A / Mawson, Amanda / Humphris, Jeremy / Chou, Angela / Pajic, Marina / Scarlett, Christopher J / Pinho, Andreia V / Giry-Laterriere, Marc / Rooman, Ilse / Samra, Jaswinder S / Kench, James G / Lovell, Jessica A / Merrett, Neil D / Toon, Christopher W / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Moran-Jones, Kim / Jamieson, Nigel B / Graham, Janet S / Duthie, Fraser / Oien, Karin / Hair, Jane / Grützmann, Robert / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Corbo, Vincenzo / Bassi, Claudio / Rusev, Borislav / Capelli, Paola / Salvia, Roberto / Tortora, Giampaolo / Mukhopadhyay, Debabrata / Petersen, Gloria M / Anonymous2640859 / Munzy, Donna M / Fisher, William E / Karim, Saadia A / Eshleman, James R / Hruban, Ralph H / Pilarsky, Christian / Morton, Jennifer P / Sansom, Owen J / Scarpa, Aldo / Musgrove, Elizabeth A / Bailey, Ulla-Maja Hagbo / Hofmann, Oliver / Sutherland, Robert L / Wheeler, David A / Gill, Anthony J / Gibbs, Richard A / Pearson, John V / Waddell, Nicola / Biankin, Andrew V / Grimmond, Sean M. ·Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. · Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. · The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. · Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. · South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. · QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. · Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. · Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. · Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. · School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. · Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. · Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. · Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. · St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. · School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. · Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. · University of Sydney, Sydney, New South Wales 2006, Australia. · Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. · School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. · Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. · Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. · Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. · School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. · Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. · West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. · Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. · Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. · GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. · Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. · Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. · The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. · ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. · Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. · Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. · Mayo Clinic, Rochester, Minnesota 55905, USA. · Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. · Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. · Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. · University of Melbourne, Parkville, Victoria 3010, Australia. ·Nature · Pubmed #26909576.

ABSTRACT: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

4 Article An open access pilot freely sharing cancer genomic data from participants in Texas. 2016

Becnel, Lauren B / Pereira, Stacey / Drummond, Jennifer A / Gingras, Marie-Claude / Covington, Kyle R / Kovar, Christie L / Doddapaneni, Harsha Vardhan / Hu, Jianhong / Muzny, Donna / McGuire, Amy L / Wheeler, David A / Gibbs, Richard A. ·Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. · Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas 77030, USA. · Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ·Sci Data · Pubmed #26882539.

ABSTRACT: Genomic data sharing in cancer has been restricted to aggregate or controlled-access initiatives to protect the privacy of research participants. By limiting access to these data, it has been argued that the autonomy of individuals who decide to participate in data sharing efforts has been superseded and the utility of the data as research and educational tools reduced. In a pilot Open Access (OA) project from the CPRIT-funded Texas Cancer Research Biobank, many Texas cancer patients were willing to openly share genomic data from tumor and normal matched pair specimens. For the first time, genetic data from 7 human cancer cases with matched normal are freely available without requirement for data use agreements nor any major restriction except that end users cannot attempt to re-identify the participants (http://txcrb.org/open.html).

5 Article Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation. 2016

Gingras, Marie-Claude / Covington, Kyle R / Chang, David K / Donehower, Lawrence A / Gill, Anthony J / Ittmann, Michael M / Creighton, Chad J / Johns, Amber L / Shinbrot, Eve / Dewal, Ninad / Fisher, William E / Anonymous400856 / Pilarsky, Christian / Grützmann, Robert / Overman, Michael J / Jamieson, Nigel B / Van Buren, George / Drummond, Jennifer / Walker, Kimberly / Hampton, Oliver A / Xi, Liu / Muzny, Donna M / Doddapaneni, Harsha / Lee, Sandra L / Bellair, Michelle / Hu, Jianhong / Han, Yi / Dinh, Huyen H / Dahdouli, Mike / Samra, Jaswinder S / Bailey, Peter / Waddell, Nicola / Pearson, John V / Harliwong, Ivon / Wang, Huamin / Aust, Daniela / Oien, Karin A / Hruban, Ralph H / Hodges, Sally E / McElhany, Amy / Saengboonmee, Charupong / Duthie, Fraser R / Grimmond, Sean M / Biankin, Andrew V / Wheeler, David A / Gibbs, Richard A. ·Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address: mgingras@bcm.edu. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; The Kinghorn Cancer Centre and the Cancer Research Program Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, NSW 2170, Australia. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. · The Kinghorn Cancer Centre and the Cancer Research Program Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX 77030, USA. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. · The Kinghorn Cancer Centre and the Cancer Research Program Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia. · Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; The Elkins Pancreas Center at Baylor College of Medicine, Houston, TX 77030, USA. · Department of Surgery, TU Dresden, 01307 Dresden, Germany. · Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; Academic Unit of Surgery, Institute of Cancer Sciences, Glasgow Royal Infirmary, Level 2, New Lister Building, University of Glasgow, Glasgow G31 2ER, UK. · Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia. · Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. · Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. · Department of Pathology, TU Dresden, 01307 Dresden, Germany. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; Department of Pathology, Southern General Hospital, Greater Glasgow and Clyde NHS, Glasgow G51 4TF, UK. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. · Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; The Elkins Pancreas Center at Baylor College of Medicine, Houston, TX 77030, USA. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. · Wolfson Wohl Cancer Research Centre, Institute for Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. · Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address: wheeler@bcm.edu. ·Cell Rep · Pubmed #26804919.

ABSTRACT: The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis.

6 Article Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. 2013

Murphy, Stephen J / Hart, Steven N / Lima, Joema Felipe / Kipp, Benjamin R / Klebig, Mitchell / Winters, Jennifer L / Szabo, Csilla / Zhang, Lizhi / Eckloff, Bruce W / Petersen, Gloria M / Scherer, Steven E / Gibbs, Richard A / McWilliams, Robert R / Vasmatzis, George / Couch, Fergus J. ·Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota. ·Gastroenterology · Pubmed #23912084.

ABSTRACT: BACKGROUND & AIMS: Increasing grade of pancreatic intraepithelial neoplasia (PanIN) has been associated with progression to pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms that control progression from PanINs to PDAC are not well understood. We investigated the genetic alterations involved in this process. METHODS: Genomic DNA samples from laser-capture microdissected PDACs and adjacent PanIN2 and PanIN3 lesions from 10 patients with pancreatic cancer were analyzed by exome sequencing. RESULTS: Similar numbers of somatic mutations were identified in PanINs and tumors, but the mutational load varied greatly among cases. Ten of the 15 isolated PanINs shared more than 50% of somatic mutations with associated tumors. Mutations common to tumors and clonally related PanIN2 and PanIN3 lesions were identified as genes that could promote carcinogenesis. KRAS and TP53 frequently were altered in PanINs and tumors, but few other recurrently modified genes were detected. Mutations in DNA damage response genes were prevalent in all samples. Genes that encode proteins involved in gap junctions, the actin cytoskeleton, the mitogen-activated protein kinase signaling pathway, axon guidance, and cell-cycle regulation were among the earliest targets of mutagenesis in PanINs that progressed to PDAC. CONCLUSIONS: Early stage PanIN2 lesions appear to contain many of the somatic gene alterations required for PDAC development.

7 Article Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. 2012

Biankin, Andrew V / Waddell, Nicola / Kassahn, Karin S / Gingras, Marie-Claude / Muthuswamy, Lakshmi B / Johns, Amber L / Miller, David K / Wilson, Peter J / Patch, Ann-Marie / Wu, Jianmin / Chang, David K / Cowley, Mark J / Gardiner, Brooke B / Song, Sarah / Harliwong, Ivon / Idrisoglu, Senel / Nourse, Craig / Nourbakhsh, Ehsan / Manning, Suzanne / Wani, Shivangi / Gongora, Milena / Pajic, Marina / Scarlett, Christopher J / Gill, Anthony J / Pinho, Andreia V / Rooman, Ilse / Anderson, Matthew / Holmes, Oliver / Leonard, Conrad / Taylor, Darrin / Wood, Scott / Xu, Qinying / Nones, Katia / Fink, J Lynn / Christ, Angelika / Bruxner, Tim / Cloonan, Nicole / Kolle, Gabriel / Newell, Felicity / Pinese, Mark / Mead, R Scott / Humphris, Jeremy L / Kaplan, Warren / Jones, Marc D / Colvin, Emily K / Nagrial, Adnan M / Humphrey, Emily S / Chou, Angela / Chin, Venessa T / Chantrill, Lorraine A / Mawson, Amanda / Samra, Jaswinder S / Kench, James G / Lovell, Jessica A / Daly, Roger J / Merrett, Neil D / Toon, Christopher / Epari, Krishna / Nguyen, Nam Q / Barbour, Andrew / Zeps, Nikolajs / Anonymous5580740 / Kakkar, Nipun / Zhao, Fengmei / Wu, Yuan Qing / Wang, Min / Muzny, Donna M / Fisher, William E / Brunicardi, F Charles / Hodges, Sally E / Reid, Jeffrey G / Drummond, Jennifer / Chang, Kyle / Han, Yi / Lewis, Lora R / Dinh, Huyen / Buhay, Christian J / Beck, Timothy / Timms, Lee / Sam, Michelle / Begley, Kimberly / Brown, Andrew / Pai, Deepa / Panchal, Ami / Buchner, Nicholas / De Borja, Richard / Denroche, Robert E / Yung, Christina K / Serra, Stefano / Onetto, Nicole / Mukhopadhyay, Debabrata / Tsao, Ming-Sound / Shaw, Patricia A / Petersen, Gloria M / Gallinger, Steven / Hruban, Ralph H / Maitra, Anirban / Iacobuzio-Donahue, Christine A / Schulick, Richard D / Wolfgang, Christopher L / Morgan, Richard A / Lawlor, Rita T / Capelli, Paola / Corbo, Vincenzo / Scardoni, Maria / Tortora, Giampaolo / Tempero, Margaret A / Mann, Karen M / Jenkins, Nancy A / Perez-Mancera, Pedro A / Adams, David J / Largaespada, David A / Wessels, Lodewyk F A / Rust, Alistair G / Stein, Lincoln D / Tuveson, David A / Copeland, Neal G / Musgrove, Elizabeth A / Scarpa, Aldo / Eshleman, James R / Hudson, Thomas J / Sutherland, Robert L / Wheeler, David A / Pearson, John V / McPherson, John D / Gibbs, Richard A / Grimmond, Sean M. ·The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia. ·Nature · Pubmed #23103869.

ABSTRACT: Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

8 Article PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. 2012

Liu, Shi-He / Rao, Donald D / Nemunaitis, John / Senzer, Neil / Zhou, Guisheng / Dawson, David / Gingras, Marie-Claude / Wang, Zhaohui / Gibbs, Richard / Norman, Michael / Templeton, Nancy S / Demayo, Francesco J / O'Malley, Bert / Sanchez, Robbi / Fisher, William E / Brunicardi, F Charles. ·Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America. ·PLoS One · Pubmed #22905092.

ABSTRACT: Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.

9 Article Genomic sequencing of key genes in mouse pancreatic cancer cells. 2012

Wang, Y / Zhang, Y / Yang, J / Ni, X / Liu, S / Li, Z / Hodges, S E / Fisher, W E / Brunicardi, F C / Gibbs, R A / Gingras, M-C / Li, M. ·Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China. ·Curr Mol Med · Pubmed #22208613.

ABSTRACT: Pancreatic cancer is a multiple genetic disorder with many mutations identified during the progression. Two mouse pancreatic cancer cell lines were established which showed different phenotype in vivo: a non-metastatic cell line, Panc02, and a highly metastatic cell line, Panc02-H7, a derivative of Panc02. In order to investigate whether the genetic mutations of key genes in pancreatic cancer such as KRAS, TP53 (p53), CDKN2A (p16), SMAD4, ZIP4, and PDX-1 contribute to the phenotypic difference of these two mouse pancreatic cancer cells, we sequenced the exonic regions of these key genes in both cell lines and in the normal syngeneic mouse pancreas and compared them with the reference mouse genome sequence. The exons of KRAS, SMAD4, CDKN2A (p16), TP53 (p53), ZIP4, and PDX-1 genes were amplified and the genotype of these genes was determined by Sanger sequencing. The sequences were analyzed with Sequencher software. A mutation in SMAD4 was identified in both cell lines. This homozygote G to T mutation in the first position of codon 174 (GAA) generated a stop codon resulting in the translation of a truncated protein. Further functional analysis indicates that different TGF-β/SMAD signaling pathways were involved in those two mouse cell lines, which may explain the phonotypic difference between the two cells. A single nucleotide polymorphism (SNP) in KRAS gene (TAT to TAC at codon 32) was also identified in the normal pancreas DNA of the syngenic mouse and in both derived tumoral Panc02 and Panc02-H7 cells. No mutation or SNP was found in CDKN2A (p16), TP53 (p53), ZIP4, and PDX-1 genes in these two cell lines. The absence of mutations in genes such as KRAS, TP53, and CDKN2A, which are considered as key genes in the development of human pancreatic cancer suggests that SMAD4 might play a central and decisive role in mouse pancreatic cancer. These results also suggest that other mechanisms are involved in the substantial phenotypic difference between these two mouse pancreatic cancer cell lines. Further studies are warranted to elucidate the molecular pathways that lead to the aggressive metastatic potential of Panc02-H7.

10 Article SSTR5 P335L monoclonal antibody differentiates pancreatic neuroendocrine neuroplasms with different SSTR5 genotypes. 2011

Zhou, Guisheng / Gingras, Marie-Claude / Liu, Shi-He / Sanchez, Robbi / Edwards, Dean / Dawson, David / Christensen, Kurt / Paganelli, Giovanni / Gibbs, Richard / Fisher, William / Brunicardi, Francis C. ·Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. ·Surgery · Pubmed #22136833.

ABSTRACT: BACKGROUND: Somatostatin receptor type 5 (SSTR5) P335L is a hypofunctional, single nucleotide polymorphism of SSTR5 with implications in the diagnostics and therapy of pancreatic neuroendocrine neoplasms. The purpose of this study is to determine whether a SSTR5 P335L-specific monoclonal antibody could sufficiently differentiate pancreatic neuroendocrine neoplasms (PNENs) with different SSTR5 genotypes. METHODS: Cellular proliferation rate, SSTR5 mRNA level, and SSTR5 protein level were measured by performing MTS assay, a quantitative reverse transcription polymerase chain reaction study, Western blot analysis, and immunohistochemistry, respectively. SSTR5 genotype was determined with the TaqMan SNP Genotyping assay (Applied Biosystems, Foster City, CA). RESULTS: We found that the SSTR5 analogue RPL-1980 inhibited cellular proliferation of CAPAN-1 cells more than that of PANC-1 cells. Only PANC-1 (TT) cells, but not CAPAN-1 (CC) cells expressed SSTR5 P335L. In 29 white patients with PNENs, 38% had a TT genotype for SSTR5 P335L, 24% had a CC genotype for WT SSTR5, and 38% hada CT genotype for both SSTR5 P335L and WT SSTR5. Immunohistochemistry using SSTR5 P335L monoclonal antibody detected immunostaining signals only from the neuroendocrine specimens with TT and CT genotypes, but not those with CC genotypes. CONCLUSION: A SSTR5 P335L monoclonal antibody that specifically recognizes SSTR5 P335L but not WT SSTR5 could differentiate PNENs with different SSTR5 genotypes, thereby providing a potential tool for the clinical diagnosis of PNEN.

11 Article Association between somatostatin receptor 5 gene polymorphisms and pancreatic cancer risk and survival. 2011

Li, Donghui / Tanaka, Motofumi / Brunicardi, F Charles / Fisher, William E / Gibbs, Richard A / Gingras, Marie-Claude. ·Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. dli@mdanderson.org ·Cancer · Pubmed #21692047.

ABSTRACT: BACKGROUND: Somatostatin (SST) inhibited cell proliferation and negatively regulated the release of growth hormones by means of specific receptors (SSTR). Genetic variation in SSTR had been associated with risk of human cancers but had never been investigated in pancreatic cancer. METHODS: In this retrospective study the SSTR5 gene in paired tumor and blood samples from 33 pancreatic adenocarcinoma patients using the Sanger method were sequenced. Three single nucleotide polymorphisms (SNPs) in samples from 863 patients with pancreatic ductal adenocarcinoma and 876 healthy controls using the TaqMan method were analyzed. The associations between gene polymorphisms and pancreatic cancer risk and survival were analyzed by multivariate logistic regression and Cox proportional hazard models, respectively. RESULTS: No somatic mutations were identified, but 3 nonsynonymous SSTR5 SNPs (P109S, L48M, and P335L) in pancreatic tumors were identified. The SSTR5 P109S variant allele was associated with a 1.62-fold increased risk of pancreatic cancer (95% confidence interval [CI]: 1.08-2.43, P = 0.019). Furthermore, the SSTR5 L48M AC variant and smoking had a joint effect on pancreatic cancer risk (p(interaction) = 0.035). The odds ratios (95% confidence intervals) were 0.58 (0.34-0.97), 1.49 (1.18-1.89), and 2.27 (1.35-3.83) for the variant genotype alone, smoking alone, and both factors, respectively, compared with no factors. Finally, SSTR5 P335L CC and P109S CC combined were associated with lower overall survival durations in patients with resectable disease. CONCLUSIONS: These data suggest that SSTR5 genetic variants play a role in pancreatic cancer development and progression.

12 Article The hypofunctional effect of P335L single nucleotide polymorphism on SSTR5 function. 2011

Zhou, Guisheng / Gingras, Marie-Claude / Liu, Shi-He / Li, Donghui / Li, Zhijun / Catania, Robbi L / Stehling, Kelly M / Li, Min / Paganelli, Giovanni / Gibbs, Richard A / Demayo, Francesco J / Fisher, William E / Brunicardi, F Charles. ·Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. ·World J Surg · Pubmed #21249361.

ABSTRACT: BACKGROUND: Somatostatin receptor subtype 5 (SSTR5) mediates the inhibitory effect of somatostatin on insulin expression/secretion and cell proliferation. A number of single nucleotide polymorphisms (SNPs) of SSTR5 have been identified, including P335L, a nonsynonymous SNP located in the protein C-terminal region and encrypted by the codon CCG (proline) or the codon CTG (leucine). In the present study we sought to determine the distribution of the SSTR5 P335L SNP in a cohort of pancreatic cancer patients and whether the P335L SNP affected cellular function of SSTR5 in human pancreatic cancer. METHODS: The P335L germline genotype of 246 patients with pancreatic cancer (213 Caucasians, 16 Hispanics, and 17 African Americans) and 17 human pancreatic cell lines was determined with the TaqMan SNP Genotyping assay. Human SSTR5 leucine variant (L335) was generated by performing site-directed mutagenesis using SSTR5 proline variant (P335) as a template. Transient transfections were performed in HEK293, Mia PaCa-2, and β-TC-6 cells using Lipofectamine 2000. The expression of SSTR5 L335 was determined with a mouse monoclonal anti-SSTR5 L335 antibody generated in our laboratory. The cell proliferation rate was measured by performing MTS assays. Insulin concentration was measured by performing ELISA assays. RESULTS: Genotyping of the patients' blood indicated that the frequency of the T allele (CT and TT genotypes) in codon 335 of SSTR5 in Caucasians, Hispanics, and African Americans was 52, 69, and 35%, respectively, which was race-dependent. Statistical analysis indicated that association between the frequency of the T allele and the existence of pancreatic cancer in each race missed significance perhaps due to limited sample size. In 17 tested human pancreatic cancer cell lines, 5 (Capan-2, HPAF-II, Panc03.27, Panc-1, and -3) were homozygous (TT genotype) and 9, including Mia PaCa-2, were heterozygous (CT genotype). Overexpression of SSTR5 L335 in Mia PaCa-2 cells enhanced cell proliferation compared to overexpression of SSTR5 P335. Overexpression of SSTR5 P335 enhanced the inhibitory effect of SSTR5 agonist RPL-1980 on cell proliferation of Mia PaCa-2 cells and glucose-stimulated insulin secretion from mouse insulinoma cells, while overexpression of SSTR5 L335 blocked the inhibitory effect of RPL-1980. Overexpression of SSTR5 L335 enhanced PDX-1 expression in Mia PaCa-2 cells. A specific monoclonal antibody was generated to detect SSTR5 P335L. CONCLUSION: SSTR5 P335L SNP widely exists in the human population, in patients with pancreatic cancer, and is race-dependent. The SNP is also present in selected human pancreatic cancer cell lines. In contrast to SSTR5 P335, overexpression of the SSTR5 L335 variant resulted in cellular proliferation and PDX-1 overexpression in human pancreatic cancer cells. Its overexpression blocked the inhibitory effect of an SSTR5-specific analog on human pancreatic cancer cell proliferation and on glucose-stimulated insulin secretion from mouse insulinoma cells. These data suggest that SSTR5 P335L is a hypofunctional protein with a potentially harmful effect on function, as well as potential latent effect, and therefore it could affect the clinical response to somatostatin analog therapy for patients with pancreatic cancer.

13 Article PDX-1: demonstration of oncogenic properties in pancreatic cancer. 2011

Liu, Shi-He / Patel, Sanjeet / Gingras, Marie-Claude / Nemunaitis, John / Zhou, Guisheng / Chen, Changyi / Li, Min / Fisher, William / Gibbs, Richard / Brunicardi, F Charles. ·Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. ·Cancer · Pubmed #20886630.

ABSTRACT: BACKGROUND: Pancreatic-duodenal homeobox 1 (PDX-1) is a transcription factor that regulates embryologic pancreas development and insulin expression in the adult islet; however, it is overexpressed in many types of cancer, including pancreatic cancer. The purpose of this study was to investigate the role of PDX-1 in tumorigenesis in human cells. METHODS: In vitro cell proliferation, invasion, and transformation were performed in human embryonic kidney cell line (HEK 293), pancreatic cancer cell line MIA PaCa2, and human pancreatic ductal epithelial (HPDE) cells transiently or stably expressing PDX-1 or green fluorescent protein (GFP) PDX-1, with or without cotransfection of PDX-1 short hairpin RNA (shRNA). In vivo tumor formation was carried out in severe combined immunodeficiency (SCID) mice with subcutaneous injection of HEK 293 and MIA PaCa2 stably transfected cells. Cell cycle was analyzed by Western blot or immunostaining. Microarray of RNA from pancreatic adenocarcinoma cells with and without PDX-1 shRNA was performed and analyzed. RESULTS: Transient and stable expressing PDX-1 significantly increased cell proliferation and invasion in HEK 293, human pancreatic ductal epithelial (HPDE), and MIA PaCa2 cells versus controls (P < .05), human PDX-1 shRNA reversed these effects. Expression of PDX-1 significantly increased colony formation in HEK 293, HPDE, and MIA PaCa2 cells versus controls in vitro (P < .05). PDX-1 promoted HEK 293 and MIA PaCa2 tumor formation in SCID mice as compared with that of control (P < .05). PDX-1 overexpression disrupted cell cycles proteins. PDX-1 expression was confirmed by Western blot and tracked by viewing of GFP-PDX-1 expression. Microarray data support an oncogenic role of PDX-1 in pancreas cancer cells. CONCLUSIONS: PDX-1 induced increased cell proliferation, invasion, and colony formation in vitro, and resulted in markedly increased HEK 293 and MIA PaCa2 tumor formation in SCID mice. These data suggest that PDX-1 is a potential oncogene that regulates tumorigenesis.