Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Madeline Ford
Based on 4 articles published since 2010
(Why 4 articles?)
||||

Between 2010 and 2020, Madeline Ford wrote the following 4 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Surgical Outcomes After Pancreatic Resection of Screening-Detected Lesions in Individuals at High Risk for Developing Pancreatic Cancer. 2020

Canto, Marcia Irene / Kerdsirichairat, Tossapol / Yeo, Charles J / Hruban, Ralph H / Shin, Eun Ji / Almario, Jose Alejandro / Blackford, Amanda / Ford, Madeline / Klein, Alison P / Javed, Ammar A / Lennon, Anne Marie / Zaheer, Atif / Kamel, Ihab R / Fishman, Elliot K / Burkhart, Richard / He, Jin / Makary, Martin / Weiss, Matthew J / Schulick, Richard D / Goggins, Michael G / Wolfgang, Christopher L. ·Division of Gastroenterology and Hepatology, Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Blalock 407, Baltimore, MD, 21287, USA. mcanto1@jhmi.edu. · Division of Gastroenterology and Hepatology, Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Blalock 407, Baltimore, MD, 21287, USA. · Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA. · Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA. · Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA. · Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA. · Department of Surgery, University of Colorado School of Medicine, Denver, CO, USA. ·J Gastrointest Surg · Pubmed #31197699.

ABSTRACT: BACKGROUND: Screening high-risk individuals (HRI) can detect potentially curable pancreatic ductal adenocarcinoma (PDAC) and its precursors. We describe the outcomes of high-risk individuals (HRI) after pancreatic resection of screen-detected neoplasms. METHODS: Asymptomatic HRI enrolled in the prospective Cancer of the Pancreas Screening (CAPS) studies from 1998 to 2014 based on family history or germline mutations undergoing surveillance for at least 6 months were included. Pathologic diagnoses, hospital length of stay, incidence of diabetes mellitus, operative morbidity, need for repeat operation, and disease-specific mortality were determined. RESULTS: Among 354 HRI, 48 (13.6%) had 57 operations (distal pancreatectomy (31), Whipple (20), and total pancreatectomy (6)) for suspected pancreatic neoplasms presenting as a solid mass (22), cystic lesion(s) (25), or duct stricture (1). The median length of stay was 7 days (IQR 5-11). Nine of the 42 HRI underwent completion pancreatectomy for a new lesion after a median of 3.8 years (IQR 2.5-7.6). Postoperative complications developed in 17 HRI (35%); there were no perioperative deaths. New-onset diabetes mellitus after partial resection developed in 20% of HRI. Fourteen PDACs were diagnosed, 11 were screen-detected, 10 were resectable, and 9 had an R0 resection. Metachronous PDAC developed in remnant pancreata of 2 HRI. PDAC-related mortality was 4/10 (40%), with 90% 1-year survival and 60% 5-year survival, respectively. CONCLUSIONS: Screening HRI can detect PDAC with a high resectability rate. Surgical treatment is associated with a relatively short length of stay and low readmission rate, acceptable morbidity, zero 90-day mortality, and significant long-term survival. CLINICAL TRIAL REGISTRATION NUMBER: NCT2000089.

2 Article Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. 2019

Abe, Toshiya / Blackford, Amanda L / Tamura, Koji / Ford, Madeline / McCormick, Patrick / Chuidian, Miguel / Almario, Jose Alejandro / Borges, Michael / Lennon, Anne Marie / Shin, Eun Ji / Klein, Alison P / Hruban, Ralph H / Canto, Marcia I / Goggins, Michael. ·1 Johns Hopkins Medical Institutions, Baltimore, MD. ·J Clin Oncol · Pubmed #30883245.

ABSTRACT: PURPOSE: To compare the risk of neoplastic progression by germline mutation status versus family history without a known germline mutation (familial risk) among individuals with an increased risk for pancreatic cancer who are undergoing surveillance. METHODS: Of 464 high-risk individuals in the Cancer of the Pancreas Screening program at Johns Hopkins Hospital who were undergoing pancreatic surveillance, 119 had a known deleterious germline mutation in a pancreatic cancer susceptibility gene; 345 met family history criteria for pancreatic surveillance but were not known to harbor a germline mutation. We used next-generation sequencing to identify previously unrecognized germline mutations among these 345 individuals. We compared the development of pancreatic cancer, high-grade dysplasia, or clinically worrisome features, adjusting for competing mortality, among all germline mutation carriers with the risk of progression in a cohort without a known germline mutation. RESULTS: Fifteen (4.3%) of 345 individuals classified as having familial risk had a previously unrecognized pancreatic cancer susceptibility gene mutation (nine that involved CONCLUSION: The cumulative incidence of pancreatic cancer is significantly higher among individuals with an identifiable deleterious germline mutation in a pancreatic cancer susceptibility gene than it is among individuals with a strong family history but no identified mutation. Gene testing of individuals who meet criteria for pancreatic surveillance on the basis of their family history may better define those most at risk for neoplastic progression.

3 Article Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. 2017

Shindo, Koji / Yu, Jun / Suenaga, Masaya / Fesharakizadeh, Shahriar / Cho, Christy / Macgregor-Das, Anne / Siddiqui, Abdulrehman / Witmer, P Dane / Tamura, Koji / Song, Tae Jun / Navarro Almario, Jose Alejandro / Brant, Aaron / Borges, Michael / Ford, Madeline / Barkley, Thomas / He, Jin / Weiss, Matthew J / Wolfgang, Christopher L / Roberts, Nicholas J / Hruban, Ralph H / Klein, Alison P / Goggins, Michael. ·All authors: The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD. ·J Clin Oncol · Pubmed #28767289.

ABSTRACT: Purpose Deleterious germline mutations contribute to pancreatic cancer susceptibility and are well documented in families in which multiple members have had pancreatic cancer. Methods To define the prevalence of these germline mutations in patients with apparently sporadic pancreatic cancer, we sequenced 32 genes, including known pancreatic cancer susceptibility genes, in DNA prepared from normal tissue obtained from 854 patients with pancreatic ductal adenocarcinoma, 288 patients with other pancreatic and periampullary neoplasms, and 51 patients with non-neoplastic diseases who underwent pancreatic resection at Johns Hopkins Hospital between 2000 and 2015. Results Thirty-three (3.9%; 95% CI, 3.0% to 5.8%) of 854 patients with pancreatic cancer had a deleterious germline mutation, 31 (3.5%) of which affected known familial pancreatic cancer susceptibility genes: BRCA2 (12 patients), ATM (10 patients), BRCA1 (3 patients), PALB2 (2 patients), MLH1 (2 patients), CDKN2A (1 patient), and TP53 (1 patient). Patients with these germline mutations were younger than those without (mean ± SD, 60.8 ± 10.6 v 65.1 ± 10.5 years; P = .03). Deleterious germline mutations were also found in BUB1B (1) and BUB3 (1). Only three of these 33 patients had reported a family history of pancreatic cancer, and most did not have a cancer family history to suggest an inherited cancer syndrome. Five (1.7%) of 288 patients with other periampullary neoplasms also had a deleterious germline mutation. Conclusion Germline mutations in pancreatic cancer susceptibility genes are commonly identified in patients with pancreatic cancer without a significant family history of cancer. These deleterious pancreatic cancer susceptibility gene mutations, some of which are therapeutically targetable, will be missed if current family history guidelines are the main criteria used to determine the appropriateness of gene testing.

4 Article Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. 2017

Yu, Jun / Sadakari, Yoshihiko / Shindo, Koji / Suenaga, Masaya / Brant, Aaron / Almario, Jose Alejandro Navarro / Borges, Michael / Barkley, Thomas / Fesharakizadeh, Shahriar / Ford, Madeline / Hruban, Ralph H / Shin, Eun Ji / Lennon, Anne Marie / Canto, Marcia Irene / Goggins, Michael. ·Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ·Gut · Pubmed #27432539.

ABSTRACT: OBJECTIVE: Secretin-stimulated pancreatic juice contains DNA shed from cells lining the pancreatic ducts. Genetic analysis of this fluid may form a test to detect pancreatic ductal neoplasia. DESIGN: We employed digital next-generation sequencing ('digital NGS') to detect low-abundance mutations in secretin-stimulated juice samples collected from the duodenum of subjects enrolled in Cancer of the Pancreas Screening studies at Johns Hopkins Hospital. For each juice sample, digital NGS necessitated 96 NGS reactions sequencing nine genes. The study population included 115 subjects (53 discovery, 62 validation) (1) with pancreatic ductal adenocarcinoma (PDAC), (2) intraductal papillary mucinous neoplasm (IPMN), (3) controls with non-suspicious pancreata. RESULTS: Cases with PDAC and IPMN were more likely to have mutant DNA detected in pancreatic juice than controls (both p<0.0001); mutant DNA concentrations were higher in patients with PDAC than IPMN (p=0.003) or controls (p<0.001). CONCLUSIONS: The detection in pancreatic juice of mutations important for the progression of low-grade dysplasia to high-grade dysplasia and invasive pancreatic cancer may improve the management of patients undergoing pancreatic screening and surveillance.