Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Eleonora Fabianova
Based on 5 articles published since 2010
(Why 5 articles?)
||||

Between 2010 and 2020, E. Fabianova wrote the following 5 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. 2017

Allenson, K / Castillo, J / San Lucas, F A / Scelo, G / Kim, D U / Bernard, V / Davis, G / Kumar, T / Katz, M / Overman, M J / Foretova, L / Fabianova, E / Holcatova, I / Janout, V / Meric-Bernstam, F / Gascoyne, P / Wistuba, I / Varadhachary, G / Brennan, P / Hanash, S / Li, D / Maitra, A / Alvarez, H. ·Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA. · Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA. · Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA. · Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, USA. · Genetic Epidemiology Group International Agency for Research on Cancer, Lyon, France. · Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. · Regional Authority of Public Health in Banska Bystrica, Banska Bystrica, Slovakia. · Institute of Public Health and Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic. · Department of Preventive Medicine, Palacky University of Medicine, Olomouc, Czech Republic. · Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic. · Department of Investigational Cancer Therapeutics and the Institute for Personalized Cancer Therapy, Houston, USA. · Section of Experimental Pathology, University of Texas M.D. Anderson Cancer Center, Houston, USA · Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, USA. ·Ann Oncol · Pubmed #28104621.

ABSTRACT: Background: Exosomes arise from viable cancer cells and may reflect a different biology than circulating cell-free DNA (cfDNA) shed from dying tissues. We compare exosome-derived DNA (exoDNA) to cfDNA in liquid biopsies of patients with pancreatic ductal adenocarcinoma (PDAC). Patients and methods: Patient samples were obtained between 2003 and 2010, with clinically annotated follow up to 2015. Droplet digital PCR was performed on exoDNA and cfDNA for sensitive detection of KRAS mutants at codons 12/13. A cumulative series of 263 individuals were studied, including a discovery cohort of 142 individuals: 68 PDAC patients of all stages; 20 PDAC patients initially staged with localized disease, with blood drawn after resection for curative intent; and 54 age-matched healthy controls. A validation cohort of 121 individuals (39 cancer patients and 82 healthy controls) was studied to validate KRAS detection rates in early-stage PDAC patients. Primary outcome was circulating KRAS status as detected by droplet digital PCR. Secondary outcomes were disease-free and overall survival. Results: KRAS mutations in exoDNA, were identified in 7.4%, 66.7%, 80%, and 85% of age-matched controls, localized, locally advanced, and metastatic PDAC patients, respectively. Comparatively, mutant KRAS cfDNA was detected in 14.8%, 45.5%, 30.8%, and 57.9% of these individuals. Higher exoKRAS MAFs were associated with decreased disease-free survival in patients with localized disease. In the validation cohort, mutant KRAS exoDNA was detected in 43.6% of early-stage PDAC patients and 20% of healthy controls. Conclusions: Exosomes are a distinct source of tumor DNA that may be complementary to other liquid biopsy DNA sources. A higher percentage of patients with localized PDAC exhibited detectable KRAS mutations in exoDNA than previously reported for cfDNA. A substantial minority of healthy samples demonstrated mutant KRAS in circulation, dictating careful consideration and application of liquid biopsy findings, which may limit its utility as a broad cancer-screening method.

2 Article KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control. 2016

Le Calvez-Kelm, Florence / Foll, Matthieu / Wozniak, Magdalena B / Delhomme, Tiffany M / Durand, Geoffroy / Chopard, Priscilia / Pertesi, Maroulio / Fabianova, Eleonora / Adamcakova, Zora / Holcatova, Ivana / Foretova, Lenka / Janout, Vladimir / Vallee, Maxime P / Rinaldi, Sabina / Brennan, Paul / McKay, James D / Byrnes, Graham B / Scelo, Ghislaine. ·International Agency for Research on Cancer (IARC), Lyon, France. · Regional Authority of Public Health, Banska Bystrica, Slovakia. · Charles University of Prague, First Faculty of Medicine, Institute of Hygiene and Epidemiology, Prague, Czech Republic. · Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University, Brno, Czech Republic. · Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic. · Faculty of Medicine, University of Ostrava, Czech Republic. ·Oncotarget · Pubmed #27705932.

ABSTRACT: The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series.

3 Article Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. 2014

Bosetti, C / Rosato, V / Li, D / Silverman, D / Petersen, G M / Bracci, P M / Neale, R E / Muscat, J / Anderson, K / Gallinger, S / Olson, S H / Miller, A B / Bas Bueno-de-Mesquita, H / Scelo, G / Janout, V / Holcatova, I / Lagiou, P / Serraino, D / Lucenteforte, E / Fabianova, E / Ghadirian, P / Baghurst, P A / Zatonski, W / Foretova, L / Fontham, E / Bamlet, W R / Holly, E A / Negri, E / Hassan, M / Prizment, A / Cotterchio, M / Cleary, S / Kurtz, R C / Maisonneuve, P / Trichopoulos, D / Polesel, J / Duell, E J / Boffetta, P / La Vecchia, C. ·Department of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy cristina.bosetti@marionegri.it. · Department of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy. · M.D. Anderson Cancer Center, University of Texas, Houston. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda. · Department of Health Sciences Research, Medicine and Medical Genetics, Mayo Clinic, Rochester. · Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA. · Queensland Institute of Medical Research, Brisbane, Australia. · Department of Public Health Sciences, Penn State University, Penn State. · Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, USA. · University Health Network, Department of Surgery, University of Toronto, Toronto, Canada. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA. · Dalla Lana School of Public Health, University of Toronto, Toronto, Canada. · National Institute for Public Health and the Environment (RIVM), Bilthoven Department of Gastroenterology and Hepatology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. · International Agency for Research on Cancer (IARC), Lyon, France. · Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc. · Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. · Department of Epidemiology, Harvard School of Public Health, Boston, USA Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Athens, Greece. · Unit of Epidemiology and Biostatistics, CRO Aviano National Cancer Institute, IRCCS, Aviano. · Department of Preclinical and Clinical Pharmacology Mario Aiazzi Mancini, Università degli Studi di Firenze, Florence, Italy. · Regional Authority of Public Health in Banská Bystrica, Banská Bystrica, Slovakia. · Department of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy M.D. Anderson Cancer Center, University of Texas, Houston Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda Department of Health Sciences Research, Medicine and Medical Genetics, Mayo Clinic, Rochester Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA Queensland Institute of Medical Research, Brisbane, Australia Department of Public Health Sciences, Penn State University, Penn State Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, USA University Health Network, Department of Surgery, University of Toronto, Toronto, Canada Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA Dalla Lana School of Public Health, University of Toronto, Toronto, Canada National Institute for Public Health and the Environment (RIVM), Bilthoven Department of Gastroenterology and Hepatology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK International Agency for Research on Cancer (IARC), Lyon, France Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic Department of Epidemiology, Harvard School of Public Health, Boston, USA Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, University of Athens, Athens, Greece Unit of Epidemiology and Biostatistics, CRO Aviano National Cancer Institute, IRCCS, Aviano Department of Preclinical and Clinical Pharmacology Mario Aiazzi Mancini, Università degli Studi di Firenze, Florence, Italy Regional Authority of Public Health in Banská Bystrica, Banská Bystrica, Slovakia Public Health, Women · Public Health, Women's and Children's Hospital, Adelaide, SA, Australia. · Cancer Center and Institute of Oncology, Warsaw, Poland. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Institute and MF MU, Brno, Czech Republic. · Louisiana State University School of Public Health, New Orleans, USA. · Dalla Lana School of Public Health, University of Toronto, Toronto, Canada Cancer Care Ontario, Toronto, Canada. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA. · Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy. · Department of Epidemiology, Harvard School of Public Health, Boston, USA. · Unit of Nutrition, Environment and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · The Tisch Cancer Institute and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, USA. · Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy. ·Ann Oncol · Pubmed #25057164.

ABSTRACT: BACKGROUND: Type 2 diabetes mellitus has been associated with an excess risk of pancreatic cancer, but the magnitude of the risk and the time-risk relationship are unclear, and there is limited information on the role of antidiabetic medications. PATIENTS AND METHODS: We analyzed individual-level data from 15 case-control studies within the Pancreatic Cancer Case-Control Consortium, including 8305 cases and 13 987 controls. Pooled odds ratios (ORs) were estimated from multiple logistic regression models, adjusted for relevant covariates. RESULTS: Overall, 1155 (15%) cases and 1087 (8%) controls reported a diagnosis of diabetes 2 or more years before cancer diagnosis (or interview, for controls), corresponding to an OR of 1.90 (95% confidence interval, CI, 1.72-2.09). Consistent risk estimates were observed across strata of selected covariates, including body mass index and tobacco smoking. Pancreatic cancer risk decreased with duration of diabetes, but a significant excess risk was still evident 20 or more years after diabetes diagnosis (OR 1.30, 95% CI 1.03-1.63). Among diabetics, long duration of oral antidiabetic use was associated with a decreased pancreatic cancer risk (OR 0.31, 95% CI 0.14-0.69, for ≥15 years). Conversely, insulin use was associated with a pancreatic cancer risk in the short term (OR 5.60, 95% CI 3.75-8.35, for <5 years), but not for longer duration of use (OR 0.95, 95% CI 0.53-1.70, for ≥15 years). CONCLUSION: This study provides the most definitive quantification to date of an excess risk of pancreatic cancer among diabetics. It also shows that a 30% excess risk persists for more than two decades after diabetes diagnosis, thus supporting a causal role of diabetes in pancreatic cancer. Oral antidiabetics may decrease the risk of pancreatic cancer, whereas insulin showed an inconsistent duration-risk relationship.

4 Article Physical activity and risk of pancreatic cancer in a central European multicenter case-control study. 2014

Brenner, Darren R / Wozniak, Magdalena B / Feyt, Clément / Holcatova, Ivana / Janout, Vladimir / Foretova, Lenka / Fabianova, Eleonora / Shonova, Olga / Martinek, Arnost / Ryska, Miroslav / Adamcakova, Zora / Flaska, Erik / Moskal, Aurelie / Brennan, Paul / Scelo, Ghislaine. ·Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69372, Lyon Cedex 08, France. ·Cancer Causes Control · Pubmed #24695987.

ABSTRACT: PURPOSE: Findings from epidemiological studies examining physical activity in relation to pancreatic cancer risk have suggested decreased risks for physical activity; however, the results are inconsistent. METHODS: The association between occupational and leisure-time physical activity and risk of pancreatic cancer was examined among 826 pancreatic cancer cases and 930 age-, sex- and center-matched controls from a large multicenter central European study in Czech Republic and Slovakia recruited between 2004 and 2012. Data on physical activity including type and dose (frequency, intensity, and duration) were examined using multivariable-adjusted logistic regression models. RESULTS: Occupational physical activity was not significantly associated with risk of pancreatic cancer [odds ratio (OR) 0.90, 95 % confidence interval (CI) 0.71-1.15]. A 35 % decrease in risk of pancreatic cancer was observed for regular leisure-time physical activity (OR 0.65, 95 % CI 0.52-0.87). The risk estimates were significant for low and moderate intensity of activity with the strongest protective effect among individuals who exercised during more than 40 weeks per year. The results for cumulated leisure-time physical activity assessed 1 year prior to diagnosis achieved the same level of risk reduction. In addition, stronger risk estimates for leisure-time physical activity were observed among women (men: OR 0.74, 95 % CI 0.54-1.01; women: OR 0.53, 95 % CI 0.37-0.75). The findings for female participants were stronger for intensity and frequency of leisure-time physical activity, in particular for light and moderate activity (OR 0.43, 95 % CI 0.25-0.75; and OR 0.57, 95 % CI 0.37-0.88, respectively). CONCLUSION: These results provide evidence for a decreased risk of pancreatic cancer associated with regular leisure-time physical activity.

5 Article Body mass index and body size in early adulthood and risk of pancreatic cancer in a central European multicenter case-control study. 2011

Urayama, Kevin Y / Holcatova, Ivana / Janout, Vladimir / Foretova, Lenka / Fabianova, Eleonora / Adamcakova, Zora / Ryska, Miroslav / Martinek, Arnost / Shonova, Olga / Brennan, Paul / Scélo, Ghislaine. ·International Agency for Research on Cancer, Lyon, France. ·Int J Cancer · Pubmed #21520034.

ABSTRACT: The relationship between two measures of excess body weight, body mass index (BMI) and body size score, and risk of pancreatic cancer was examined among 574 pancreatic cancer cases and 596 frequency-matched controls from the Czech Republic and Slovakia enrolled between 2004 and 2009. Analyses using multivariable logistic regression showed an increased risk of pancreatic cancer associated with elevated quartiles of BMI at ages 20 [fourth quartile: odds ratio (OR) = 1.79, 95% confidence interval (CI): 1.23, 2.61] and 40 (fourth quartile: OR = 1.57, 95% CI: 1.09, 2.27) compared to the lowest quartile. Consistent results were observed for body size score at ages 20 (high versus low: OR = 1.66, 95% CI: 1.08, 2.57) and 40 (medium versus low: OR = 1.36, 95% CI: 1.00, 1.86), but no association was found for BMI and body size score at 2 years before the interview. Stronger risk estimates for BMI were observed in males than females, particularly at age 20, but the analysis of body size yielded similar estimates by sex. When considering excess body weight at both ages 20 and 40 jointly, the highest risk estimates were observed among subjects with elevated levels at both time periods in the analysis of BMI (OR = 1.86, 95% CI: 1.32, 2.62) and body size (OR = 1.53, 95% CI: 1.09, 2.13). These findings, based on two different measures, provide strong support for an increased risk of pancreatic cancer associated with excess body weight, possibly strongest during early adulthood.