Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Ulrika Ericson
Based on 3 articles published since 2010
(Why 3 articles?)
||||

Between 2010 and 2020, U. Ericson wrote the following 3 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Dietary folate intake and pancreatic cancer risk: Results from the European prospective investigation into cancer and nutrition. 2019

Park, Jin Young / Bueno-de-Mesquita, H Bas / Ferrari, Pietro / Weiderpass, Elisabete / de Batlle, Jordi / Tjønneland, Anne / Kyro, Cecilie / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Katzke, Verena / Kühn, Tilman / Boeing, Heiner / Trichopoulou, Antonia / La Vecchia, Carlo / Kritikou, Maria / Masala, Giovanna / Pala, Valeria / Tumino, Rosario / Panico, Salvatore / Peeters, Petra H / Skeie, Guri / Merino, Susana / Duell, Eric J / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, Maria-Dolores / Ardanaz, Eva / Gylling, Björn / Schneede, Jörn / Ericson, Ulrika / Sternby, Hanna / Khaw, Kay-Tee / Bradbury, Kathryn E / Huybrechts, Inge / Aune, Dagfinn / Vineis, Paolo / Slimani, Nadia. ·International Agency for Research on Cancer, Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · School of Public Health, Imperial College London, London, United Kingdom. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway. · Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Group of Translational Research in Respiratory Medicine, IRBLleida, Hospital Universitari Arnau de Vilanova and Santa Maria, Lleida, Spain. · Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM-UMR 1149, University Paris 7, France. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, Université Paris-Saclay, France. · Gustave Roussy, Villejuif, France. · German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Germany. · Hellenic Health Foundation, Athens, Greece. · Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy. · Epidemiology and Prevention Unit, IRCCS Foundation National Cancer Institute, Milan, Italy. · Cancer Registry and Histopathology Department, 'Civic-M.P. Arezzo' Hospital, ASP Ragusa, Italy. · Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Dirección de Salud Pública y Adicciones, Gobierno Vasco, Vitoria, Spain. · Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden. · Department of Clinical Pharmacology, Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden. · Diabetes and Cardiovascular disease, Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Sweden. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom. · Bjørknes University College, Oslo, Norway. · IIGM Foundation, Turin, Italy. ·Int J Cancer · Pubmed #30178496.

ABSTRACT: Pancreatic cancer (PC) has an exceptionally low survival rate and primary prevention strategies are limited. Folate plays an important role in one-carbon metabolism and has been associated with the risk of several cancers, but not consistently with PC risk. We aimed to investigate the association between dietary folate intake and PC risk, using the standardised folate database across 10 European countries. A total of 477,206 participants were followed up for 11 years, during which 865 incident primary PC cases were recorded. Folate intake was energy-adjusted using the residual method. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. In multivariable analyses stratified by age, sex, study centre and adjusted for energy intake, smoking status, BMI, educational level, diabetes status, supplement use and dietary fibre intake, we found no significant association between folate intake and PC risk: the HR of PC risk for those in the highest quartile of folate intake (≥353 μg/day) compared to the lowest (<241 μg/day) was 0.81 (95% CI: 0.51, 1.31; p

2 Article Flavonoid and lignan intake and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2016

Molina-Montes, Esther / Sánchez, María-José / Zamora-Ros, Raul / Bueno-de-Mesquita, H B As / Wark, Petra A / Obon-Santacana, Mireia / Kühn, Tilman / Katzke, Verena / Travis, Ruth C / Ye, Weimin / Sund, Malin / Naccarati, Alessio / Mattiello, Amalia / Krogh, Vittorio / Martorana, Caterina / Masala, Giovanna / Amiano, Pilar / Huerta, José-María / Barricarte, Aurelio / Quirós, José-Ramón / Weiderpass, Elisabete / Angell Åsli, Lene / Skeie, Guri / Ericson, Ulrika / Sonestedt, Emily / Peeters, Petra H / Romieu, Isabelle / Scalbert, Augustin / Overvad, Kim / Clemens, Matthias / Boeing, Heiner / Trichopoulou, Antonia / Peppa, Eleni / Vidalis, Pavlos / Khaw, Kay-Tee / Wareham, Nick / Olsen, Anja / Tjønneland, Anne / Boutroun-Rualt, Marie-Christine / Clavel-Chapelon, Françoise / Cross, Amanda J / Lu, Yunxia / Riboli, Elio / Duell, Eric J. ·Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, GRANADA, Hospitales Universitarios De Granada/Universidad De Granada, Granada, Spain. · CIBERESP, CIBER Epidemiología Y Salud Pública, Spain. · Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, the School of Public Health, Imperial College London, London, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Global eHealth Unit, Department of Primary Care and Public Health, the School of Public Health, Imperial College London, London, United Kingdom. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · Molecular and Genetic Epidemiology Unit, HuGeF-Human Genetics Foundation, Torino, Italy. · Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy. · Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. · Cancer Registry ASP, Ragusa, Italy. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Public Health Institute of Navarra, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, the Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece. · University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom. · Epidemiology Unit, Medical Research Council, Cambridge, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Inserm, CESP Centre for Research in Epidemiology and Population Health, France. ·Int J Cancer · Pubmed #27184434.

ABSTRACT: Despite the potential cancer preventive effects of flavonoids and lignans, their ability to reduce pancreatic cancer risk has not been demonstrated in epidemiological studies. Our aim was to examine the association between dietary intakes of flavonoids and lignans and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A total of 865 exocrine pancreatic cancer cases occurred after 11.3 years of follow-up of 477,309 cohort members. Dietary flavonoid and lignan intake was estimated through validated dietary questionnaires and the US Department of Agriculture (USDA) and Phenol Explorer databases. Hazard ratios (HR) and 95% confidence intervals (CIs) were calculated using age, sex and center-stratified Cox proportional hazards models, adjusted for energy intake, body mass index (BMI), smoking, alcohol and diabetes status. Our results showed that neither overall dietary intake of flavonoids nor of lignans were associated with pancreatic cancer risk (multivariable-adjusted HR for a doubling of intake = 1.03, 95% CI: 0.95-1.11 and 1.02; 95% CI: 0.89-1.17, respectively). Statistically significant associations were also not observed by flavonoid subclasses. An inverse association between intake of flavanones and pancreatic cancer risk was apparent, without reaching statistical significance, in microscopically confirmed cases (HR for a doubling of intake = 0.96, 95% CI: 0.91-1.00). In conclusion, we did not observe an association between intake of flavonoids, flavonoid subclasses or lignans and pancreatic cancer risk in the EPIC cohort.

3 Article Dietary intake of acrylamide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. 2013

Obón-Santacana, M / Slimani, N / Lujan-Barroso, L / Travier, N / Hallmans, G / Freisling, H / Ferrari, P / Boutron-Ruault, M C / Racine, A / Clavel, F / Saieva, C / Pala, V / Tumino, R / Mattiello, A / Vineis, P / Argüelles, M / Ardanaz, E / Amiano, P / Navarro, C / Sánchez, M J / Molina Montes, E / Key, T / Khaw, K-T / Wareham, N / Peeters, P H / Trichopoulou, A / Bamia, C / Trichopoulos, D / Boeing, H / Kaaks, R / Katzke, V / Ye, W / Sund, M / Ericson, U / Wirfält, E / Overvad, K / Tjønneland, A / Olsen, A / Skeie, G / Åsli, L A / Weiderpass, E / Riboli, E / Bueno-de-Mesquita, H B / Duell, E J. ·Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. ·Ann Oncol · Pubmed #23857962.

ABSTRACT: BACKGROUND: In 1994, acrylamide (AA) was classified as a probable human carcinogen by the International Agency for Research on Cancer. In 2002, AA was discovered at relatively high concentrations in some starchy, plant-based foods cooked at high temperatures. PATIENTS AND METHODS: A prospective analysis was conducted to evaluate the association between the dietary intake of AA and ductal adenocarcinoma of the exocrine pancreatic cancer (PC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort using Cox regression modeling. EPIC includes >500,000 men and women aged 35-75 at enrollment from 10 European countries. AA intake was estimated for each participant by combining questionnaire-based food consumption data with a harmonized AA database derived from the EU monitoring database of AA levels in foods, and evaluated in quintiles and continuously. RESULTS: After a mean follow-up of 11 years, 865 first incident adenocarcinomas of the exocrine pancreas were observed and included in the present analysis. At baseline, the mean dietary AA intake in EPIC was 26.22 µg/day. No overall association was found between continuous or quintiles of dietary AA intake and PC risk in EPIC (HR:0.95, 95%CI:0.89-1.01 per 10 µg/day). There was no effect measure modification by smoking status, sex, diabetes, alcohol intake or geographic region. However, there was an inverse association (HR: 0.73, 95% CI: 0.61-0.88 per 10 µg/day) between AA intake and PC risk in obese persons as defined using the body mass index (BMI, ≥ 30 kg/m(2)), but not when body fatness was defined using waist and hip circumference or their ratio. CONCLUSIONS: Dietary intake of AA was not associated with an increased risk of PC in the EPIC cohort.