Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Samantha Deitz-McElyea
Based on 4 articles published since 2010
(Why 4 articles?)

Between 2010 and 2020, Samantha Deitz McElyea wrote the following 4 articles about Pancreatic Neoplasms.
+ Citations + Abstracts
1 Article Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. 2017

Duell, Eric J / Lujan-Barroso, Leila / Sala, Núria / Deitz McElyea, Samantha / Overvad, Kim / Tjonneland, Anne / Olsen, Anja / Weiderpass, Elisabete / Busund, Lill-Tove / Moi, Line / Muller, David / Vineis, Paolo / Aune, Dagfinn / Matullo, Giuseppe / Naccarati, Alessio / Panico, Salvatore / Tagliabue, Giovanna / Tumino, Rosario / Palli, Domenico / Kaaks, Rudolf / Katzke, Verena A / Boeing, Heiner / Bueno-de-Mesquita, H B As / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Kotanidou, Anastasia / Travis, Ruth C / Wareham, Nick / Khaw, Kay-Tee / Ramon Quiros, Jose / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, María-Dolores / Ardanaz, Eva / Severi, Gianluca / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Brennan, Paul / Gunter, Marc / Scelo, Ghislaine / Cote, Greg / Sherman, Stuart / Korc, Murray. ·Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway. · Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. · School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom. · Human Genetics Foundation (HuGeF), Turin, Italy. · Department of Medical Sciences, University of Turin, Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P, Arezzo" Hospital, ASP, Ragusa, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany. · Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece. · Department of Epidemiology, Harvard School of Public Health, Boston, MA. · Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Public Health Directorate, Asturias, Spain. · Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada. · CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Basque Regional Health Department, San Sebatian, Spain. · Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, France. · Beaujon Hospital, Pancreatology Unit, Clichy, France. · INSERM, University Paris, France. · International Agency for Research on Cancer (IARC), Lyon, France. · Medical University of South Carolina, Charleston, SC. · Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN. · Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN. ·Int J Cancer · Pubmed #28542740.

ABSTRACT: Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).

2 Article MicroRNA Expression in a Readily Accessible Common Hepatic Artery Lymph Node Predicts Time to Pancreatic Cancer Recurrence Postresection. 2016

Nguyen, Hai V / Gore, Jesse / Zhong, Xin / Savant, Sudha S / Deitz-McElyea, Samantha / Schmidt, C Max / House, Michael G / Korc, Murray. ·Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. · The Pancreatic Cancer Signature Center, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA. · Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. mkorc@iu.edu. · The Pancreatic Cancer Signature Center, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA. mkorc@iu.edu. · Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. mkorc@iu.edu. · IU Simon Cancer Center, Indiana University School of Medicine, 980 West Walnut Street, Rm 528, Indianapolis, IN, 46202, USA. mkorc@iu.edu. ·J Gastrointest Surg · Pubmed #27456015.

ABSTRACT: Lymph node involvement in pancreatic adenocarcinoma (PAC) predicts postresection survival, but early lymph node metastasis detection is not easily accomplished. We assessed a panel of microRNAs (miRNAs) in a common hepatic artery lymph node (station 8) that is readily accessible during pancreatoduodenectomy (PD) to determine if increased miRNA levels correlate with postresection recurrence. Station 8 lymph nodes overlying the common hepatic artery collected during PD were assayed for miRNA-10b, miRNA-30c, miRNA-21, and miRNA-155 and cytokeratin-19 (CK19), an epithelial cell marker, using quantitative PCR. Expression was correlated with disease recurrence, recurrence-free survival (RFS), and overall survival (OS). Station 8 lymph nodes from 37 patients (30 periampullary carcinomas (PCs), 2 chronic pancreatitis, 5 other cancers) exhibited increased miRNA-10b levels in 14/30 PCs, and in 10 of these 14 patients, cancer recurred during the study period (2012-2015). High miRNA-10b was also associated with shorter RFS (42.5 vs. 92.4 weeks, p < 0.05) but not OS, whereas miRNA-30c, miRNA-21, and miRNA-155 levels and CK19 mRNA levels in station 8 nodes were variable and did not correlate with RFS or OS. We conclude that elevated miRNA-10b levels in station 8 lymph nodes could be utilized to assess risk for early disease progression in patients with periampullary tumors.

3 Article Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes. 2015

Joshi, Gayatri K / Deitz-McElyea, Samantha / Liyanage, Thakshila / Lawrence, Katie / Mali, Sonali / Sardar, Rajesh / Korc, Murray. ·Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis , 402 North Blackford Street, LD 326, Indianapolis, Indiana 46202, United States. · Departments of Medicine, and Biochemistry and Molecular Biology, the Indiana University Simon Cancer Center, and the Pancreatic Cancer Signature Center, Indiana University School of Medicine , 980 West Walnut Street, R3-C528, Indianapolis, Indiana 46202, United States. · Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis , 402 North Blackford Street, Indianapolis, Indiana 46202, United States. ·ACS Nano · Pubmed #26444644.

ABSTRACT: MicroRNAs are short noncoding RNAs consisting of 18-25 nucleotides that target specific mRNA moieties for translational repression or degradation, thereby modulating numerous biological processes. Although microRNAs have the ability to behave like oncogenes or tumor suppressors in a cell-autonomous manner, their exact roles following release into the circulation are only now being unraveled and it is important to establish sensitive assays to measure their levels in different compartments in the circulation. Here, an ultrasensitive localized surface plasmon resonance (LSPR)-based microRNA sensor with single nucleotide specificity was developed using chemically synthesized gold nanoprisms attached onto a solid substrate with unprecedented long-term stability and reversibility. The sensor was used to specifically detect microRNA-10b at the attomolar (10(-18) M) concentration in pancreatic cancer cell lines, derived tissue culture media, human plasma, and media and plasma exosomes. In addition, for the first time, our label-free and nondestructive sensing technique was used to quantify microRNA-10b in highly purified exosomes isolated from patients with pancreatic cancer or chronic pancreatitis, and from normal controls. We show that microRNA-10b levels were significantly higher in plasma-derived exosomes from pancreatic ductal adenocarcinoma patients when compared with patients with chronic pancreatitis or normal controls. Our findings suggest that this unique technique can be used to design novel diagnostic strategies for pancreatic and other cancers based on the direct quantitative measurement of plasma and exosome microRNAs, and can be readily extended to other diseases with identifiable microRNA signatures.

4 Article Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. 2014

Joshi, Gayatri K / Deitz-McElyea, Samantha / Johnson, Merrell / Mali, Sonali / Korc, Murray / Sardar, Rajesh. ·Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD 326, Indianapolis, Indiana 46202, United States. ·Nano Lett · Pubmed #25379951.

ABSTRACT: MicroRNAs (miRs) are small noncoding RNAs that regulate mRNA stability and/or translation. Because of their release into the circulation and their remarkable stability, miR levels in plasma and other biological fluids can serve as diagnostic and prognostic disease biomarkers. However, quantifying miRs in the circulation is challenging due to issues with sensitivity and specificity. This Letter describes for the first time the design and characterization of a regenerative, solid-state localized surface plasmon resonance (LSPR) sensor based on highly sensitive nanostructures (gold nanoprisms) that obviates the need for labels or amplification of the miRs. Our direct hybridization approach has enabled the detection of subfemtomolar concentration of miR-X (X = 21 and 10b) in human plasma in pancreatic cancer patients. Our LSPR-based measurements showed that the miR levels measured directly in patient plasma were at least 2-fold higher than following RNA extraction and quantification by reverse transcriptase-polymerase chain reaction. Through LSPR-based measurements we have shown nearly 4-fold higher concentrations of miR-10b than miR-21 in plasma of pancreatic cancer patients. We propose that our highly sensitive and selective detection approach for assaying miRs in plasma can be applied to many cancer types and disease states and should allow a rational approach for testing the utility of miRs as markers for early disease diagnosis and prognosis, which could allow for the design of effective individualized therapeutic approaches.