Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Kari G. Chaffee
Based on 15 articles published since 2009
(Why 15 articles?)
||||

Between 2009 and 2019, Kari G. Chaffee wrote the following 15 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article None 2018

McWilliams, Robert R / Wieben, Eric D / Chaffee, Kari G / Antwi, Samuel O / Raskin, Leon / Olopade, Olufunmilayo I / Li, Donghui / Highsmith, W Edward / Colon-Otero, Gerardo / Khanna, Lauren G / Permuth, Jennifer B / Olson, Janet E / Frucht, Harold / Genkinger, Jeanine / Zheng, Wei / Blot, William J / Wu, Lang / Almada, Luciana L / Fernandez-Zapico, Martin E / Sicotte, Hugues / Pedersen, Katrina S / Petersen, Gloria M. ·Department of Oncology, Mayo Clinic, Rochester, Minnesota. Mcwilliams.robert@mayo.edu. · Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota. · Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida. · Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee. · Departments of Medicine and Human Genetics, University of Chicago Medical Center, Chicago, Illinois. · Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. · Department of Medicine, Division of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida. · Department of Medicine, Columbia University Medical Center, New York, New York. · Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida. · Department of Epidemiology, Columbia University Medical Center, New York, New York. · Herbert Irving Comprehensive Cancer Center, New York, New York. · Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota. · Division of Oncology, Washington University, St. Louis, Missouri. ·Cancer Epidemiol Biomarkers Prev · Pubmed #30038052.

ABSTRACT:

2 Article Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. 2018

Hu, Chunling / Hart, Steven N / Polley, Eric C / Gnanaolivu, Rohan / Shimelis, Hermela / Lee, Kun Y / Lilyquist, Jenna / Na, Jie / Moore, Raymond / Antwi, Samuel O / Bamlet, William R / Chaffee, Kari G / DiCarlo, John / Wu, Zhong / Samara, Raed / Kasi, Pashtoon M / McWilliams, Robert R / Petersen, Gloria M / Couch, Fergus J. ·Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida. · Qiagen Sciences Research and Development, Qiagen Inc, Hilden, Germany. · Department of Medicine, Mayo Clinic, Jacksonville, Florida. · Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota. ·JAMA · Pubmed #29922827.

ABSTRACT: Importance: Individuals genetically predisposed to pancreatic cancer may benefit from early detection. Genes that predispose to pancreatic cancer and the risks of pancreatic cancer associated with mutations in these genes are not well defined. Objective: To determine whether inherited germline mutations in cancer predisposition genes are associated with increased risks of pancreatic cancer. Design, Setting, and Participants: Case-control analysis to identify pancreatic cancer predisposition genes; longitudinal analysis of patients with pancreatic cancer for prognosis. The study included 3030 adults diagnosed as having pancreatic cancer and enrolled in a Mayo Clinic registry between October 12, 2000, and March 31, 2016, with last follow-up on June 22, 2017. Reference controls were 123 136 individuals with exome sequence data in the public Genome Aggregation Database and 53 105 in the Exome Aggregation Consortium database. Exposures: Individuals were classified based on carrying a deleterious mutation in cancer predisposition genes and having a personal or family history of cancer. Main Outcomes and Measures: Germline mutations in coding regions of 21 cancer predisposition genes were identified by sequencing of products from a custom multiplex polymerase chain reaction-based panel; associations of genes with pancreatic cancer were assessed by comparing frequency of mutations in genes of pancreatic cancer patients with those of reference controls. Results: Comparing 3030 case patients with pancreatic cancer (43.2% female; 95.6% non-Hispanic white; mean age at diagnosis, 65.3 [SD, 10.7] years) with reference controls, significant associations were observed between pancreatic cancer and mutations in CDKN2A (0.3% of cases and 0.02% of controls; odds ratio [OR], 12.33; 95% CI, 5.43-25.61); TP53 (0.2% of cases and 0.02% of controls; OR, 6.70; 95% CI, 2.52-14.95); MLH1 (0.13% of cases and 0.02% of controls; OR, 6.66; 95% CI, 1.94-17.53); BRCA2 (1.9% of cases and 0.3% of controls; OR, 6.20; 95% CI, 4.62-8.17); ATM (2.3% of cases and 0.37% of controls; OR, 5.71; 95% CI, 4.38-7.33); and BRCA1 (0.6% of cases and 0.2% of controls; OR, 2.58; 95% CI, 1.54-4.05). Conclusions and Relevance: In this case-control study, mutations in 6 genes associated with pancreatic cancer were found in 5.5% of all pancreatic cancer patients, including 7.9% of patients with a family history of pancreatic cancer and 5.2% of patients without a family history of pancreatic cancer. Further research is needed for replication in other populations.

3 Article Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. 2018

Antwi, Samuel O / Bamlet, William R / Pedersen, Katrina S / Chaffee, Kari G / Risch, Harvey A / Shivappa, Nitin / Steck, Susan E / Anderson, Kristin E / Bracci, Paige M / Polesel, Jerry / Serraino, Diego / La Vecchia, Carlo / Bosetti, Cristina / Li, Donghui / Oberg, Ann L / Arslan, Alan A / Albanes, Demetrius / Duell, Eric J / Huybrechts, Inge / Amundadottir, Laufey T / Hoover, Robert / Mannisto, Satu / Chanock, Stephen J / Zheng, Wei / Shu, Xiao-Ou / Stepien, Magdalena / Canzian, Federico / Bueno-de-Mesquita, Bas / Quirós, José Ramon / Zeleniuch-Jacquotte, Anne / Bruinsma, Fiona / Milne, Roger L / Giles, Graham G / Hébert, James R / Stolzenberg-Solomon, Rachael Z / Petersen, Gloria M. ·Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. · Division of Oncology, Washington University, St. Louis, MO, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA. · Cancer Prevention and Control Program, USA. · Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. · Unit of Epidemiology and Biostatistics, Centro di Riferimento Oncologico, Aviano (PN), Italy. · Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. · Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy. · Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA. · Department of Population Health, New York University School of Medicine, New York, NY, USA. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA. · Unit of Nutrition and Cancer, Bellvitge Biomedical Research Institute-IDIBELL, Catalan Institute of Oncology-ICO. L'Hospitalet de Llobregat, Barcelona, Spain. · International Agency for Research on Cancer, World Health Organization, France. · Department of Public Health Solutions, National Institute for Health and Welfare Helsinki, Finland. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, Malaysia. · Public Health Directorate, Asturias, Spain. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia. ·Carcinogenesis · Pubmed #29800239.

ABSTRACT: Diets with high inflammatory potential are suspected to increase risk for pancreatic cancer (PC). Using pooled analyses, we examined whether this association applies to populations from different geographic regions and population subgroups with varying risks for PC, including variation in ABO blood type. Data from six case-control studies (cases, n = 2414; controls, n = 4528) in the Pancreatic Cancer Case-Control Consortium (PanC4) were analyzed, followed by replication in five nested case-control studies (cases, n = 1268; controls, n = 4215) from the Pancreatic Cancer Cohort Consortium (PanScan). Two polymorphisms in the ABO locus (rs505922 and rs8176746) were used to infer participants' blood types. Dietary questionnaire-derived nutrient/food intake was used to compute energy-adjusted dietary inflammatory index (E-DII®) scores to assess inflammatory potential of diet. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted logistic regression. Higher E-DII scores, reflecting greater inflammatory potential of diet, were associated with increased PC risk in PanC4 [ORQ5 versus Q1=2.20, 95% confidence interval (CI) = 1.85-2.61, Ptrend < 0.0001; ORcontinuous = 1.20, 95% CI = 1.17-1.24], and PanScan (ORQ5 versus Q1 = 1.23, 95% CI = 0.92-1.66, Ptrend = 0.008; ORcontinuous = 1.09, 95% CI = 1.02-1.15). As expected, genotype-derived non-O blood type was associated with increased PC risk in both the PanC4 and PanScan studies. Stratified analyses of associations between E-DII quintiles and PC by genotype-derived ABO blood type did not show interaction by blood type (Pinteraction = 0.10 in PanC4 and Pinteraction=0.13 in PanScan). The results show that consuming a pro-inflammatory diet and carrying non-O blood type are each individually, but not interactively, associated with increased PC risk.

4 Article Attitudes Toward Return of Genetic Research Results to Relatives, Including After Death: Comparison of Cancer Probands, Blood Relatives, and Spouse/Partners. 2018

Radecki Breitkopf, Carmen / Wolf, Susan M / Chaffee, Kari G / Robinson, Marguerite E / Lindor, Noralane M / Gordon, Deborah R / Koenig, Barbara A / Petersen, Gloria M. ·1 Mayo Clinic, Rochester, MN, USA. · 2 University of Minnesota, Minneapolis, MN, USA. · 3 Mayo Clinic, Scottsdale, AZ, USA. · 4 University of California, San Francisco, CA, USA. ·J Empir Res Hum Res Ethics · Pubmed #29701109.

ABSTRACT: Genetic research generates results with implications for relatives. Recommendations addressing relatives' access to a participant's genetic research findings include eliciting participant preferences about access and choosing a representative to make decisions about access upon participant incapacity/death. Representatives are likely to be blood relatives or spouse/partners (who may share genetically related children). This raises the question of whether relatives hold similar attitudes about access or divergent attitudes that may yield conflict. We surveyed pancreatic cancer biobank participants (probands) and relatives in a family registry (blood relatives and spouse/partners of probands); 1,903 (>55%) surveys were returned. Results revealed few attitudinal differences between the groups. A slightly higher proportion of blood relatives agreed with statements reflecting proband privacy. In conclusion, probands' decisions on access are likely to be accepted by relatives; in choosing a representative, probands may not face major differences in attitudes about privacy/sharing between a blood relative and a spouse/partner.

5 Article Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. 2018

Klein, Alison P / Wolpin, Brian M / Risch, Harvey A / Stolzenberg-Solomon, Rachael Z / Mocci, Evelina / Zhang, Mingfeng / Canzian, Federico / Childs, Erica J / Hoskins, Jason W / Jermusyk, Ashley / Zhong, Jun / Chen, Fei / Albanes, Demetrius / Andreotti, Gabriella / Arslan, Alan A / Babic, Ana / Bamlet, William R / Beane-Freeman, Laura / Berndt, Sonja I / Blackford, Amanda / Borges, Michael / Borgida, Ayelet / Bracci, Paige M / Brais, Lauren / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, Bas / Buring, Julie / Campa, Daniele / Capurso, Gabriele / Cavestro, Giulia Martina / Chaffee, Kari G / Chung, Charles C / Cleary, Sean / Cotterchio, Michelle / Dijk, Frederike / Duell, Eric J / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gallinger, Steven / M Gaziano, J Michael / Gazouli, Maria / Giles, Graham G / Giovannucci, Edward / Goggins, Michael / Goodman, Gary E / Goodman, Phyllis J / Hackert, Thilo / Haiman, Christopher / Hartge, Patricia / Hasan, Manal / Hegyi, Peter / Helzlsouer, Kathy J / Herman, Joseph / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert / Hung, Rayjean J / Jacobs, Eric J / Jamroziak, Krzysztof / Janout, Vladimir / Kaaks, Rudolf / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Kooperberg, Charles / Kulke, Matthew H / Kupcinskas, Juozas / Kurtz, Robert J / Laheru, Daniel / Landi, Stefano / Lawlor, Rita T / Lee, I-Min / LeMarchand, Loic / Lu, Lingeng / Malats, Núria / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Mohelníková-Duchoňová, Beatrice / Neale, Rachel E / Neoptolemos, John P / Oberg, Ann L / Olson, Sara H / Orlow, Irene / Pasquali, Claudio / Patel, Alpa V / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Real, Francisco X / Rothman, Nathaniel / Scelo, Ghislaine / Sesso, Howard D / Severi, Gianluca / Shu, Xiao-Ou / Silverman, Debra / Smith, Jill P / Soucek, Pavel / Sund, Malin / Talar-Wojnarowska, Renata / Tavano, Francesca / Thornquist, Mark D / Tobias, Geoffrey S / Van Den Eeden, Stephen K / Vashist, Yogesh / Visvanathan, Kala / Vodicka, Pavel / Wactawski-Wende, Jean / Wang, Zhaoming / Wentzensen, Nicolas / White, Emily / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Zheng, Wei / Kraft, Peter / Li, Donghui / Chanock, Stephen / Obazee, Ofure / Petersen, Gloria M / Amundadottir, Laufey T. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. aklein1@jhmi.edu. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA. · Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA. · International Agency for Research on Cancer (IARC), 69372, Lyon, France. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. · Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA. · Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. · Department of Biology, University of Pisa, 56126, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA. · Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada. · Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic. · Yale Cancer Center, New Haven, CT, 06510, USA. · Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy. · Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA. · Boston VA Healthcare System, Boston, MA, 02132, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany. · Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA. · Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA. · First Department of Medicine, University of Szeged, 6725, Szeged, Hungary. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic. · Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA. · Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland. · Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic. · Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. · ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain. · CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain. · Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain. · Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy. · Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain. · CIBERONC, 28029, Madrid, Spain. · Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy. · Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland. · Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic. · Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia. · Department of General Surgery, University of Heidelburg, Heidelberg, Germany. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain. · Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. · Department of Medicine, Georgetown University, Washington, 20057, USA. · Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic. · Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, 90-647, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy. · Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic. · Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA. · Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. amundadottirl@mail.nih.gov. ·Nat Commun · Pubmed #29422604.

ABSTRACT: In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10

6 Article Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. 2018

Chaffee, Kari G / Oberg, Ann L / McWilliams, Robert R / Majithia, Neil / Allen, Brian A / Kidd, John / Singh, Nanda / Hartman, Anne-Renee / Wenstrup, Richard J / Petersen, Gloria M. ·Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA. · Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA. · Myriad Genetics Laboratories, Inc., Salt Lake City, Utah, USA. ·Genet Med · Pubmed #28726808.

ABSTRACT: PurposePanel-based genetic testing has identified increasing numbers of patients with pancreatic ductal adenocarcinoma (PDAC) who carry germ-line mutations. However, small sample sizes or number of genes evaluated limit prevalence estimates of these mutations. We estimated prevalence of mutations in PDAC patients with positive family history.MethodsWe sequenced 25 cancer susceptibility genes in lymphocyte DNA from 302 PDAC patients in the Mayo Clinic Biospecimen Resource for Pancreatic Research Registry. Kindreds containing at least two first-degree relatives with PDAC met criteria for familial pancreatic cancer (FPC), while the remaining were familial, but not FPC.ResultsThirty-six patients (12%) carried at least one deleterious mutation in one of 11 genes. Of FPC patients, 25/185 (14%) were carriers, while 11/117 (9%) non-FPC patients with family history were carriers. Deleterious mutations (n) identified in PDAC patients were BRCA2 (11), ATM (8), CDKN2A (4), CHEK2 (4), MUTYH/MYH (3 heterozygotes, not biallelic), BRCA1 (2), and 1 each in BARD1, MSH2, NBN, PALB2, and PMS2. Novel mutations were found in ATM, BARD1, and PMS2.ConclusionMultiple susceptibility gene testing in PDAC patients with family history of pancreatic cancer is warranted regardless of FPC status and will inform genetic risk counseling for families.

7 Article Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. 2017

Kim, Jungsun / Bamlet, William R / Oberg, Ann L / Chaffee, Kari G / Donahue, Greg / Cao, Xing-Jun / Chari, Suresh / Garcia, Benjamin A / Petersen, Gloria M / Zaret, Kenneth S. ·Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center (Tumor Biology Program), Perelman School of Medicine, University of Pennsylvania, 9-131 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. · Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. · Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA. · Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. · Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Abramson Cancer Center (Tumor Biology Program), Perelman School of Medicine, University of Pennsylvania, 9-131 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA. zaret@upenn.edu. ·Sci Transl Med · Pubmed #28701476.

ABSTRACT: Markers are needed to facilitate early detection of pancreatic ductal adenocarcinoma (PDAC), which is often diagnosed too late for effective therapy. Starting with a PDAC cell reprogramming model that recapitulated the progression of human PDAC, we identified secreted proteins and tested a subset as potential markers of PDAC. We optimized an enzyme-linked immunosorbent assay (ELISA) using plasma samples from patients with various stages of PDAC, from individuals with benign pancreatic disease, and from healthy controls. A phase 1 discovery study (

8 Article Genetically Predicted Telomere Length is not Associated with Pancreatic Cancer Risk. 2017

Antwi, Samuel O / Bamlet, William R / Broderick, Brendan T / Chaffee, Kari G / Oberg, Ann / Jatoi, Aminah / Boardman, Lisa A / Petersen, Gloria M. ·Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota. · Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota. · Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. petersen.gloria@mayo.edu. ·Cancer Epidemiol Biomarkers Prev · Pubmed #28264873.

ABSTRACT:

9 Article Association of Common Susceptibility Variants of Pancreatic Cancer in Higher-Risk Patients: A PACGENE Study. 2016

Childs, Erica J / Chaffee, Kari G / Gallinger, Steven / Syngal, Sapna / Schwartz, Ann G / Cote, Michele L / Bondy, Melissa L / Hruban, Ralph H / Chanock, Stephen J / Hoover, Robert N / Fuchs, Charles S / Rider, David N / Amundadottir, Laufey T / Stolzenberg-Solomon, Rachael / Wolpin, Brian M / Risch, Harvey A / Goggins, Michael G / Petersen, Gloria M / Klein, Alison P. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. · Population Sciences Division, Dana-Farber Cancer Institute, and Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts. · Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan. · Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland. Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, U.S. Department of Health and Human Services, Bethesda, Maryland. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland. Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland. aklein1@jhmi.edu. ·Cancer Epidemiol Biomarkers Prev · Pubmed #27197284.

ABSTRACT: Individuals from pancreatic cancer families are at increased risk, not only of pancreatic cancer, but also of melanoma, breast, ovarian, and colon cancers. While some of the increased risk may be due to mutations in high-penetrance genes (i.e., BRCA2, PALB2, ATM, p16/CDKN2A or DNA mismatch repair genes), common genetic variants may also be involved. In a high-risk population of cases with either a family history of pancreatic cancer or early-onset pancreatic cancer (diagnosis before the age of 50 years), we examined the role of genetic variants previously associated with risk of pancreatic, breast, ovarian, or prostate cancer. We genotyped 985 cases (79 early-onset cases, 906 cases with a family history of pancreatic cancer) and 877 controls for 215,389 SNPs using the iSelect Collaborative Oncological Gene-Environment Study (iCOGS) array with custom content. Logistic regression was performed using a log-linear additive model. We replicated several previously reported pancreatic cancer susceptibility loci, including recently identified variants on 2p13.3 and 7p13 (2p13.3, rs1486134: OR = 1.36; 95% CI, 1.13-1.63; P = 9.29 × 10(-4); 7p13, rs17688601: OR = 0.76; 95% CI, 0.63-0.93; P = 6.59 × 10(-3)). For the replicated loci, the magnitude of association observed in these high-risk patients was similar to that observed in studies of unselected patients. In addition to the established pancreatic cancer loci, we also found suggestive evidence of association (P < 5 × 10(-5)) to pancreatic cancer for SNPs at HDAC9 (7p21.1) and COL6A2 (21q22.3). Even in high-risk populations, common variants influence pancreatic cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 25(7); 1185-91. ©2016 AACR.

10 Article Metformin Use and Survival of Patients With Pancreatic Cancer: A Cautionary Lesson. 2016

Chaiteerakij, Roongruedee / Petersen, Gloria M / Bamlet, William R / Chaffee, Kari G / Zhen, David B / Burch, Patrick A / Leof, Emma R / Roberts, Lewis R / Oberg, Ann L. ·Roongruedee Chaiteerakij and Lewis R. Roberts, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center · Gloria M. Petersen, William R. Bamlet, Kari G. Chaffee, David B. Zhen, Patrick A. Burch, Emma R. Leof, and Ann L. Oberg, Mayo Clinic, Rochester, MN · Roongruedee Chaiteerakij, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand · and David B. Zhen, University of Michigan, Ann Arbor, MI. ·J Clin Oncol · Pubmed #27069086.

ABSTRACT: PURPOSE: The inclusion of metformin in the treatment arms of cancer clinical trials is based on improved survival that has been demonstrated in retrospective epidemiologic studies; however, unintended biases may exist when analysis is performed by using a conventional Cox proportional hazards regression model with dichotomous ever/never categorization. We examined the impact of metformin exposure definitions, analytical methods, and patient selection on the estimated effect size of metformin exposure on survival in a large cohort of patients with pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS: Of newly diagnosed patients with PDAC with diabetes, 980 were retrospectively included, and exposure to metformin documented. Median survival was assessed by using Kaplan-Meier and log-rank methods. Hazard ratios (HR) and 95% CIs were computed to compare time-varying covariate analysis with conventional Cox proportional hazards regression analysis. RESULTS: Median survival of metformin users versus nonusers was 9.9 versus 8.9 months, respectively. By the time-varying covariate analysis, metformin use was not statistically significantly associated with improved survival (HR, 0.93; 95% CI, 0.81 to1.07; P = .28). There was no evidence of benefit in the subset of patients who were naïve to metformin at the time of PDAC diagnosis (most representative of patients enrolled in clinical trials; HR, 1.01; 95% CI, 0.80 to 1.30; P = .89); however, when the analysis was performed by using the conventional Cox model, an artificial survival benefit of metformin was detected (HR, 0.88; 95% CI, 0.77 to 1.01; P = .08), which suggested biased results from the conventional Cox analysis. CONCLUSION: Our findings did not suggest the benefit of metformin use after patients are diagnosed with PDAC. We highlight the importance of patient selection and appropriate statistical analytical methods when studying medication exposure and cancer survival.

11 Article Pancreatic cancer: associations of inflammatory potential of diet, cigarette smoking and long-standing diabetes. 2016

Antwi, Samuel O / Oberg, Ann L / Shivappa, Nitin / Bamlet, William R / Chaffee, Kari G / Steck, Susan E / Hébert, James R / Petersen, Gloria M. ·Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN 55905, USA and. · Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA. ·Carcinogenesis · Pubmed #26905587.

ABSTRACT: Epidemiologic studies show strong associations between pancreatic cancer (PC) and inflammatory stimuli or conditions such as cigarette smoking and diabetes, suggesting that inflammation may play a key role in PC. Studies of dietary patterns and cancer outcomes also suggest that diet might influence an individual's risk of PC by modulating inflammation. We therefore examined independent and joint associations between inflammatory potential of diet, cigarette smoking and long-standing (≥5 years) type II diabetes in relation to risk of PC. Analyses included data from 817 cases and 1756 controls. Inflammatory potential of diet was measured using the dietary inflammatory index (DII), calculated from dietary intake assessed via a 144-item food frequency questionnaire, and adjusted for energy intake. Information on smoking and diabetes were obtained via risk factor questionnaires. Associations were examined using multivariable-adjusted logistic regression. Higher DII scores, reflecting a more proinflammatory diet, were associated with increased risk of PC [odds ratio (OR)Quintile 5 versus 1 = 2.54, 95% confidence interval (CI) = 1.87-3.46, P trend < 0.0001]. Excess risk of PC also was observed among former (OR = 1.29, 95% CI = 1.07-1.54) and current (OR = 3.40, 95% CI = 2.28-5.07) smokers compared with never smokers, and among participants with long-standing diabetes (OR = 3.09, 95% CI = 2.02-4.72) compared with nondiabetics. Joint associations were observed for the combined effects of having greater than median DII score, and being a current smoker (OR = 4.79, 95% CI = 3.00-7.65) or having long-standing diabetes (OR = 6.03, 95% CI = 3.41-10.85). These findings suggest that a proinflammatory diet may act as cofactor with cigarette smoking and diabetes to increase risk of PC beyond the risk of any of these factors alone.

12 Article Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. 2016

Roberts, Nicholas J / Norris, Alexis L / Petersen, Gloria M / Bondy, Melissa L / Brand, Randall / Gallinger, Steven / Kurtz, Robert C / Olson, Sara H / Rustgi, Anil K / Schwartz, Ann G / Stoffel, Elena / Syngal, Sapna / Zogopoulos, George / Ali, Syed Z / Axilbund, Jennifer / Chaffee, Kari G / Chen, Yun-Ching / Cote, Michele L / Childs, Erica J / Douville, Christopher / Goes, Fernando S / Herman, Joseph M / Iacobuzio-Donahue, Christine / Kramer, Melissa / Makohon-Moore, Alvin / McCombie, Richard W / McMahon, K Wyatt / Niknafs, Noushin / Parla, Jennifer / Pirooznia, Mehdi / Potash, James B / Rhim, Andrew D / Smith, Alyssa L / Wang, Yuxuan / Wolfgang, Christopher L / Wood, Laura D / Zandi, Peter P / Goggins, Michael / Karchin, Rachel / Eshleman, James R / Papadopoulos, Nickolas / Kinzler, Kenneth W / Vogelstein, Bert / Hruban, Ralph H / Klein, Alison P. ·Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota. · Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas. · Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. · Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York. · Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. · Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan. · Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. · Population Sciences Division, Dana-Farber Cancer Institute, and Gastroenterology Division, Brigham and Women's Hospital, Boston, Massachusetts. · The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada. Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada. · Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland. · Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. · Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Memorial Sloan Kettering Cancer Center, New York, New York. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. · Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. inGenious Targeting Laboratory, Ronkonkoma, New York. · Department of Psychiatry, University of Iowa, Iowa City, Iowa. · Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Department of Medicine, University of Michigan, Ann Arbor, Michigan. · Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. · Ludwig Center and the Howard Hughes Medical Institute, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. vogelbe@jhmi.edu nrobert8@jhmi.edu kinzlke@jhmi.edu rhruban@jhmi.edu aklein1@jhmi.edu. ·Cancer Discov · Pubmed #26658419.

ABSTRACT: SIGNIFICANCE: The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.

13 Article Preferences Regarding Return of Genomic Results to Relatives of Research Participants, Including after Participant Death: Empirical Results from a Cancer Biobank. 2015

Breitkopf, Carmen Radecki / Petersen, Gloria M / Wolf, Susan M / Chaffee, Kari G / Robinson, Marguerite E / Gordon, Deborah R / Lindor, Noralane M / Koenig, Barbara A. ·Associate Professor of Health Services Research in the Department of Health Sciences Research at Mayo Clinic College of Medicine in Rochester, Minnesota. She earned her Master's and Doctoral degrees in Psychology from The State University of New York at Albany. · Professor of Epidemiology in the Department of Health Sciences Research at Mayo Clinic College of Medicine in Rochester, Minnesota. She earned her Master's degree in Anthropology from University of Oregon, and Ph.D. in Anthropology from UCLA. She is a Founding Fellow of the American College of Medical Genetics and Genomics. · McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine; Faculty member, Center for Bioethics; and Chair, Consortium on Law and Values in Health, Environment & the Life Sciences at the University of Minnesota. She is one of three Principal Investigators on NIH/NCI/NHGRI grant # R01 CA154517 on return of genomic results to family members, including after the death of the proband. · MS Statistician III in the Department of Health Sciences Research at Mayo Clinic College of Medicine in Rochester, Minnesota. She earned her Master's degree in Statistics from Iowa State University. · Program Manager for Biomedical Ethics Research at Mayo Clinic in Rochester, Minnesota. She earned her Master's degree in Religion & Ethics from Yale University Divinity School and Master's degree in Biotechnology from Columbia University. · Assistant Professor of Medical Anthropology in the Department of Anthropology, History, and Social Medicine at the University of California, San Francisco and an Affiliate of the Berkeley Center for Social Medicine at University of California, Berkeley. She earned her B.A. in Anthropology at UC Berkeley, her Master's degree at the Tel Aviv University and UCSF, and her Ph.D. in Medical Anthropology at UCSF/UC Berkeley. She has conducted qualitative, ethnographic research on a wide range of health-related topics in the United States, Israel, and Italy. · Professor of Medical Genetics in the Department of Health Sciences Research at Mayo Clinic in Scottsdale, Arizona. She received her Bachelor of Arts degree from the University of Minnesota, her doctorate of medicine from Mayo Medical School in Rochester, Minnesota and completed her residencies at Bowman Gray School of Medicine in Winston-Salem, North Carolina, and at Mayo Clinic in Rochester, Minnesota. · Professor of Bioethics and Medical Anthropology based at the Institute for Health & Aging, University of California, San Francisco. Currently, she co-directs a Center of Excellence in ELSI Research that focuses on translational genomics, co-leads an NCI/NHGRI R01 on return of results in genomic biobanks, and directs the ELSI component of a U19 award focused on newborn screening in an era of whole genome analysis. ·J Law Med Ethics · Pubmed #26479556.

ABSTRACT: Data are lacking with regard to participants' perspectives on return of genetic research results to relatives, including after the participant's death. This paper reports descriptive results from 3,630 survey respondents: 464 participants in a pancreatic cancer biobank, 1,439 family registry participants, and 1,727 healthy individuals. Our findings indicate that most participants would feel obligated to share their results with blood relatives while alive and would want results to be shared with relatives after their death.

14 Article Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. 2015

Antwi, Samuel O / Eckert, Elizabeth C / Sabaque, Corinna V / Leof, Emma R / Hawthorne, Kieran M / Bamlet, William R / Chaffee, Kari G / Oberg, Ann L / Petersen, Gloria M. ·Division of Epidemiology, Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN, 55905, USA. · Department of Clinical and Translational Science, Mayo Clinic Graduate School, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. · Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. · Division of Epidemiology, Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN, 55905, USA. Petersen.Gloria@mayo.edu. ·Cancer Causes Control · Pubmed #26293241.

ABSTRACT: PURPOSE: Exposure to various chemicals and heavy metals has been associated with risk of different cancers; however, data on whether such exposures may increase the risk of pancreatic cancer (PC) are very limited and inconclusive. We examined PC risk with self-reported exposures to chemicals and heavy metals. METHODS: The design was a clinic-based, case-control study of data collected from 2000 to 2014 at Mayo Clinic in Rochester, Minnesota, USA. Cases were rapidly ascertained patients diagnosed with pancreatic ductal adenocarcinoma (n = 2,092). Controls were cancer-free patients in primary care clinics (n = 2,353), frequency-matched to cases on age, race, sex, and state/region of residence. Cases and controls completed identical risk factor questionnaires, which included yes/no questions about regular exposure to pesticides, asbestos, benzene, chlorinated hydrocarbons, chromium, and nickel. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) comparing those who affirmed exposure to each of the chemicals/heavy metals to those who reported no regular exposure, adjusting for potential confounders. RESULTS: Self-reported regular exposure to pesticides was associated with increased odds of PC (OR 1.21, 95% CI 1.02-1.44). Regular exposure to asbestos (OR 1.54, 95% CI 1.23-1.92), benzene (OR 1.70, 95% CI 1.23-2.35), and chlorinated hydrocarbons (OR 1.63, 95% CI 1.32-2.02) also was associated with higher odds of PC. Chromium and nickel exposures were not significantly associated with PC. CONCLUSIONS: These findings add to the limited data suggesting that exposure to pesticides, asbestos, benzene, and chlorinated hydrocarbons may increase PC risk. They further support the importance of implementing strategies that reduce exposure to these substances.

15 Article Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. 2015

Childs, Erica J / Mocci, Evelina / Campa, Daniele / Bracci, Paige M / Gallinger, Steven / Goggins, Michael / Li, Donghui / Neale, Rachel E / Olson, Sara H / Scelo, Ghislaine / Amundadottir, Laufey T / Bamlet, William R / Bijlsma, Maarten F / Blackford, Amanda / Borges, Michael / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, H Bas / Canzian, Federico / Capurso, Gabriele / Cavestro, Giulia M / Chaffee, Kari G / Chanock, Stephen J / Cleary, Sean P / Cotterchio, Michelle / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gazouli, Maria / Hassan, Manal / Herman, Joseph M / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert N / Hung, Rayjean J / Janout, Vladimir / Key, Timothy J / Kupcinskas, Juozas / Kurtz, Robert C / Landi, Stefano / Lu, Lingeng / Malecka-Panas, Ewa / Mambrini, Andrea / Mohelnikova-Duchonova, Beatrice / Neoptolemos, John P / Oberg, Ann L / Orlow, Irene / Pasquali, Claudio / Pezzilli, Raffaele / Rizzato, Cosmeri / Saldia, Amethyst / Scarpa, Aldo / Stolzenberg-Solomon, Rachael Z / Strobel, Oliver / Tavano, Francesca / Vashist, Yogesh K / Vodicka, Pavel / Wolpin, Brian M / Yu, Herbert / Petersen, Gloria M / Risch, Harvey A / Klein, Alison P. ·Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. · 1] Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. [2] Department of Biology, University of Pisa, Pisa, Italy. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. · Department of Population Health, QIMR Berghofer Medical Research Institute, Kelvin Grove,Queensland, Australia. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA. · International Agency for Research on Cancer (IARC), Lyon, France. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA. · Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany. · 1] Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. [2] Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. [3] Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. [4] Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, Rome, Italy. · Università Vita Salute San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy. · 1] Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada. [2] Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada. · 1] Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada. [2] Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and Medical Faculty Masaryk University, Brno, Czech Republic. · 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy. · Department of Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece. · Department of Radiation Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. · Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic. · Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic. · Cancer Epidemiology Unit, University of Oxford, Oxford, UK. · Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. · Department of Biology, Section of Genetics, University of Pisa, Pisa, Italy. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA. · Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland. · Department of Oncology, Azienda USL 1 Massa Carrara, Massa Carrara, Italy. · Laboratory of Toxicogenomics, Institute of Public Health, Prague, Czech Republic. · National Institute for Health Research (NIHR) Pancreas Biomedical Research Unit, Liverpool Clinical Trials Unit and Cancer Research UK Clinical Trials Unit, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. · Department of Surgery, Gastroenterology and Oncology, University of Padua, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases, Sant'Orsola-Malpighi Hospital, Bologna, Italy. · ARC-NET-Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy. · Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Rockville, Maryland, USA. · Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Italy. · Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences, Prague, Czech Republic. · 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. · Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA. · 1] Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. [2] Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. ·Nat Genet · Pubmed #26098869.

ABSTRACT: Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.