Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Bas Bueno-de-Mesquita
Based on 4 articles published since 2009
(Why 4 articles?)
||||

Between 2009 and 2019, B. Bueno-de-Mesquita wrote the following 4 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. 2018

Klein, Alison P / Wolpin, Brian M / Risch, Harvey A / Stolzenberg-Solomon, Rachael Z / Mocci, Evelina / Zhang, Mingfeng / Canzian, Federico / Childs, Erica J / Hoskins, Jason W / Jermusyk, Ashley / Zhong, Jun / Chen, Fei / Albanes, Demetrius / Andreotti, Gabriella / Arslan, Alan A / Babic, Ana / Bamlet, William R / Beane-Freeman, Laura / Berndt, Sonja I / Blackford, Amanda / Borges, Michael / Borgida, Ayelet / Bracci, Paige M / Brais, Lauren / Brennan, Paul / Brenner, Hermann / Bueno-de-Mesquita, Bas / Buring, Julie / Campa, Daniele / Capurso, Gabriele / Cavestro, Giulia Martina / Chaffee, Kari G / Chung, Charles C / Cleary, Sean / Cotterchio, Michelle / Dijk, Frederike / Duell, Eric J / Foretova, Lenka / Fuchs, Charles / Funel, Niccola / Gallinger, Steven / M Gaziano, J Michael / Gazouli, Maria / Giles, Graham G / Giovannucci, Edward / Goggins, Michael / Goodman, Gary E / Goodman, Phyllis J / Hackert, Thilo / Haiman, Christopher / Hartge, Patricia / Hasan, Manal / Hegyi, Peter / Helzlsouer, Kathy J / Herman, Joseph / Holcatova, Ivana / Holly, Elizabeth A / Hoover, Robert / Hung, Rayjean J / Jacobs, Eric J / Jamroziak, Krzysztof / Janout, Vladimir / Kaaks, Rudolf / Khaw, Kay-Tee / Klein, Eric A / Kogevinas, Manolis / Kooperberg, Charles / Kulke, Matthew H / Kupcinskas, Juozas / Kurtz, Robert J / Laheru, Daniel / Landi, Stefano / Lawlor, Rita T / Lee, I-Min / LeMarchand, Loic / Lu, Lingeng / Malats, Núria / Mambrini, Andrea / Mannisto, Satu / Milne, Roger L / Mohelníková-Duchoňová, Beatrice / Neale, Rachel E / Neoptolemos, John P / Oberg, Ann L / Olson, Sara H / Orlow, Irene / Pasquali, Claudio / Patel, Alpa V / Peters, Ulrike / Pezzilli, Raffaele / Porta, Miquel / Real, Francisco X / Rothman, Nathaniel / Scelo, Ghislaine / Sesso, Howard D / Severi, Gianluca / Shu, Xiao-Ou / Silverman, Debra / Smith, Jill P / Soucek, Pavel / Sund, Malin / Talar-Wojnarowska, Renata / Tavano, Francesca / Thornquist, Mark D / Tobias, Geoffrey S / Van Den Eeden, Stephen K / Vashist, Yogesh / Visvanathan, Kala / Vodicka, Pavel / Wactawski-Wende, Jean / Wang, Zhaoming / Wentzensen, Nicolas / White, Emily / Yu, Herbert / Yu, Kai / Zeleniuch-Jacquotte, Anne / Zheng, Wei / Kraft, Peter / Li, Donghui / Chanock, Stephen / Obazee, Ofure / Petersen, Gloria M / Amundadottir, Laufey T. ·Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. aklein1@jhmi.edu. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. aklein1@jhmi.edu. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, 10016, USA. · Department of Population Health, New York University School of Medicine, New York, NY, 10016, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA. · Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. · Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. · Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, M5G 1×5, Canada. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA. · International Agency for Research on Cancer (IARC), 69372, Lyon, France. · Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · Division of Preventive Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. · Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA. · Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. · Department of Biology, University of Pisa, 56126, Pisa, Italy. · Digestive and Liver Disease Unit, 'Sapienza' University of Rome, 00185, Rome, Italy. · Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA. · Cancer Care Ontario, University of Toronto, Toronto, Ontario, M5G 2L7, Canada. · Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada. · Department of Pathology, Academic Medical Center, University of Amsterdam, 1007 MB, Amsterdam, The Netherlands. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, 08908, Spain. · Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 65653, Brno, Czech Republic. · Yale Cancer Center, New Haven, CT, 06510, USA. · Department of Translational Research and The New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy. · Division of Aging, Brigham and Women's Hospital, Boston, MA, 02115, USA. · Boston VA Healthcare System, Boston, MA, 02132, USA. · Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 106 79, Athens, Greece. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia. · Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia. · Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia. · Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. · Department of General Surgery, University Hospital Heidelberg, 69120, Heidelberg, Germany. · Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA. · Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA. · First Department of Medicine, University of Szeged, 6725, Szeged, Hungary. · Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. · Department of Radiation Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21231, USA. · Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, 150 06, Prague 5, Czech Republic. · Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA. · Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776, Warsaw, Poland. · Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic. · Faculty of Medicine, University of Olomouc, 771 47, Olomouc, Czech Republic. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. · School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK. · Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. · ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08003, Barcelona, Spain. · CIBER Epidemiología y Salud Pública (CIBERESP), 08003, Barcelona, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, 08003, Barcelona, Spain. · Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain. · Department of Gastroenterology, Lithuanian University of Health Sciences, 44307, Kaunas, Lithuania. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, 37134, Verona, Italy. · Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA. · Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA. · Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain. · CIBERONC, 28029, Madrid, Spain. · Oncology Department, ASL1 Massa Carrara, Carrara, 54033, Italy. · Department of Public Health Solutions, National Institute for Health and Welfare, 00271, Helsinki, Finland. · Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, 775 20, Olomouc, Czech Republic. · Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia. · Department of General Surgery, University of Heidelburg, Heidelberg, Germany. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. · Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, 35124, Padua, Italy. · Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, 40138, Bologna, Italy. · Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. · Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002, Barcelona, Spain. · Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, 94800, Villejuif, France. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. · Department of Medicine, Georgetown University, Washington, 20057, USA. · Laboratory for Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00, Pilsen, Czech Republic. · Department of Surgical and Perioperative Sciences, Umeå University, 901 85, Umeå, Sweden. · Department of Digestive Tract Diseases, Medical University of Łodz, 90-647, Łodz, Poland. · Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy. · Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA. · Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, 20246, Hamburg, Germany. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. · Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic. · Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, 14214, USA. · Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA. · Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA. · Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. · Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. amundadottirl@mail.nih.gov. ·Nat Commun · Pubmed #29422604.

ABSTRACT: In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10

2 Article Dietary intake of iron, heme-iron and magnesium and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. 2012

Molina-Montes, Esther / Wark, Petra A / Sánchez, María-José / Norat, Teresa / Jakszyn, Paula / Luján-Barroso, Leila / Michaud, Dominique S / Crowe, Francesca / Allen, Naomi / Khaw, Kay-Tee / Wareham, Nicholas / Trichopoulou, Antonia / Adarakis, George / Katarachia, Helen / Skeie, Guri / Henningsen, Maria / Broderstad, Ann Ragnhild / Berrino, Franco / Tumino, Rosario / Palli, Domenico / Mattiello, Amalia / Vineis, Paolo / Amiano, Pilar / Barricarte, Aurelio / Huerta, José-María / Duell, Eric J / Quirós, José-Ramón / Ye, Weimin / Sund, Malin / Lindkvist, Björn / Johansen, Dorthe / Overvad, Kim / Tjønneland, Anne / Roswall, Nina / Li, Kuanrong / Grote, Verena A / Steffen, Annika / Boeing, Heiner / Racine, Antoine / Boutron-Ruault, Marie-Christine / Carbonnel, Franck / Peeters, Petra H M / Siersema, Peter D / Fedirko, Veronika / Jenab, Mazda / Riboli, Elio / Bueno-de-Mesquita, Bas. ·Andalusian School of Public Health. Granada Cancer Registry, Spain. ·Int J Cancer · Pubmed #22438075.

ABSTRACT: Several studies support a protective effect of dietary magnesium against type 2 diabetes, but a harmful effect for iron. As diabetes has been linked to pancreatic cancer, intake of these nutrients may be also associated with this cancer. We examined the association between dietary intake of magnesium, total iron and heme-iron and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. In total, 142,203 men and 334,999 women, recruited between 1992 and 2000, were included. After an average follow-up of 11.3 years, 396 men and 469 women developed exocrine pancreatic cancer. Hazard ratios and 95% confidence intervals (CIs) were obtained using Cox regression stratified by age and center, and adjusted for energy intake, smoking status, height, weight, and self-reported diabetes status. Neither intake of magnesium, total iron nor heme-iron was associated with pancreatic cancer risk. In stratified analyses, a borderline inverse association was observed among overweight men (body mass index, ≥ 25 kg/m(2) ) with magnesium (HR(per 100 mg/day increase) = 0.79, 95% CI = 0.63-1.01) although this was less apparent using calibrated intake. In female smokers, a higher intake of heme-iron was associated with a higher pancreatic cancer risk (HR (per 1 mg/day increase) = 1.38, 95% CI = 1.10-1.74). After calibration, this risk increased significantly to 2.5-fold (95% CI = 1.22-5.28). Overall, dietary magnesium, total iron and heme-iron were not associated with pancreatic cancer risk during the follow-up period. Our observation that heme-iron was associated with increased pancreatic cancer risk in female smokers warrants replication in additional study populations.

3 Article A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. 2011

Chuang, Shu-Chun / Stolzenberg-Solomon, Rachael / Ueland, Per Magne / Vollset, Stein Emil / Midttun, Øivind / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Boutron-Ruault, Marie-Christine / Morois, Sophie / Clavel-Chapelon, Françoise / Teucher, Birgit / Kaaks, Rudolf / Weikert, Cornelia / Boeing, Heiner / Trichopoulou, Antonia / Benetou, Vassiliki / Naska, Androniki / Jenab, Mazda / Slimani, Nadia / Romieu, Isabelle / Michaud, Dominique S / Palli, Domenico / Sieri, Sabina / Panico, Salvatore / Sacerdote, Carlotta / Tumino, Rosario / Skeie, Guri / Duell, Eric J / Rodriguez, Laudina / Molina-Montes, Esther / Huerta, José Marı A / Larrañaga, Nerea / Gurrea, Aurelio Barricarte / Johansen, Dorthe / Manjer, Jonas / Ye, Weimin / Sund, Malin / Peeters, Petra H M / Jeurnink, Suzanne / Wareham, Nicholas / Khaw, Kay-Tee / Crowe, Francesca / Riboli, Elio / Bueno-de-Mesquita, Bas / Vineis, Paolo. ·School of Public Health, Imperial College London, London, UK. ·Eur J Cancer · Pubmed #21411310.

ABSTRACT: Folate intake has shown an inverse association with pancreatic cancer; nevertheless, results from plasma measurements were inconsistent. The aim of this study is to examine the association between plasma total homocysteine, methionine, folate, cobalamin, pyridoxal 5'-phosphate, riboflavin, flavin mononucleotide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). We conducted a nested case-control study in the EPIC cohort, which has an average of 9.6 years of follow-up (1992-2006), using 463 incident pancreatic cancer cases. Controls were matched to each case by center, sex, age (± 1 year), date (± 1 year) and time (± 3 h) at blood collection and fasting status. Conditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence intervals (CI), adjusting for education, smoking status, plasma cotinine concentration, alcohol drinking, body mass index and diabetes status. We observed a U-shaped association between plasma folate and pancreatic cancer risk. The ORs for plasma folate ≤ 5, 5-10, 10-15 (reference), 15-20, and > 20 nmol/L were 1.58 (95% CI=0.72-3.46), 1.39 (0.93-2.08), 1.0 (reference), 0.79 (0.52-1.21), and 1.34 (0.89-2.02), respectively. Methionine was associated with an increased risk in men (per quintile increment: OR=1.17, 95% CI=1.00-1.38) but not in women (OR=0.91, 95% CI=0.78-1.07; p for heterogeneity <0.01). Our results suggest a U-shaped association between plasma folate and pancreatic cancer risk in both men and women. The positive association that we observed between methionine and pancreatic cancer may be sex dependent and may differ by time of follow-up. However, the mechanisms behind the observed associations warrant further investigation.

4 Article No association between educational level and pancreatic cancer incidence in the European Prospective Investigation into Cancer and Nutrition. 2010

van Boeckel, Petra G A / Boshuizen, Hendriek C / Siersema, Peter D / Vrieling, Alina / Kunst, Anton E / Ye, Weimin / Sund, Malin / Michaud, Dominique S / Gallo, Valentina / Spencer, Elizabeth A / Trichopoulou, Antonia / Benetou, Vasiliki / Orfanos, Philippos / Cirera, Lluis / Duell, Eric J / Rohrmann, Sabine / Hemann, Silke / Masala, Giovanni / Manjer, Jonas / Mattiello, Amalia / Lindkvist, Bjorn / Sánchez, María-José / Pala, Valeria / Peeters, Petra H M / Braaten, Tonje / Tjonneland, Anne / Dalton, Susanne Oksbjerg / Larranaga, Nerea / Dorronsoro, Miren / Overvad, Kim / Illner, Anne-Kathrin / Ardanaz, Eva / Marron, M / Straif, K / Riboli, E / Bueno-de-Mesquita, B. ·National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. p.g.a.vanboeckel@umcutrecht.nl ·Cancer Epidemiol · Pubmed #20829145.

ABSTRACT: INTRODUCTION: Until now, studies examining the relationship between socioeconomic status and pancreatic cancer incidence have been inconclusive. AIM: To prospectively investigate to what extent pancreatic cancer incidence varies according to educational level within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS: In the EPIC study, socioeconomic status at baseline was measured using the highest level of education attained. Hazard ratios by educational level and a summary index, the relative indices of inequality (RII), were estimated using Cox regression models stratified by age, gender, and center and adjusted for known risk factors. In addition, we conducted separate analyses by age, gender and geographical region. RESULTS: Within the source population of 407, 944 individuals at baseline, 490 first incident primary pancreatic adenocarcinoma cases were identified in 9 European countries. The crude difference in risk of pancreatic cancer according to level of education was small and not statistically significant (RII=1.14, 95% CI 0.80-1.62). Adjustment for known risk factors reduced the inequality estimates to only a small extent. In addition, no statistically significant associations were observed for age groups (adjusted RII(≤ 60 years)=0.85, 95% CI 0.44-1.64, adjusted RII(>60 years)=1.18, 95% CI 0.73-1.90), gender (adjusted RII(male)=1.20, 95% CI 0.68-2.10, adjusted RII(female)=0.96, 95% CI 0.56-1.62) or geographical region (adjusted RII(Northern Europe)=1.14, 95% CI 0.81-1.61, adjusted RII(Middle Europe)=1.72, 95% CI 0.93-3.19, adjusted RII(Southern Europe)=0.75, 95% CI 0.32-1.80). CONCLUSION: Despite large educational inequalities in many risk factors within the EPIC study, we found no evidence for an association between educational level and the risk of developing pancreatic cancer in this European cohort.