Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Kevin M. Brown
Based on 2 articles published since 2010
(Why 2 articles?)
||||

Between 2010 and 2020, Kevin M. Brown wrote the following 2 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Article Characterising 2018

Zhang, Mingfeng / Lykke-Andersen, Soren / Zhu, Bin / Xiao, Wenming / Hoskins, Jason W / Zhang, Xijun / Rost, Lauren M / Collins, Irene / Bunt, Martijn van de / Jia, Jinping / Parikh, Hemang / Zhang, Tongwu / Song, Lei / Jermusyk, Ashley / Chung, Charles C / Zhu, Bin / Zhou, Weiyin / Matters, Gail L / Kurtz, Robert C / Yeager, Meredith / Jensen, Torben Heick / Brown, Kevin M / Ongen, Halit / Bamlet, William R / Murray, Bradley A / McCarthy, Mark I / Chanock, Stephen J / Chatterjee, Nilanjan / Wolpin, Brian M / Smith, Jill P / Olson, Sara H / Petersen, Gloria M / Shi, Jianxin / Amundadottir, Laufey. ·Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA. · Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA. · Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA. · Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, FDA, Jefferson, Missouri, USA. · Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA. · Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. · Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK. · Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA. · Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA. · Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA. · Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland. · Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA. · The Eli and Edythe L Broad Institute of Massachusetts Institute of Technology and Harvard University Cambridge, Cambridge, Massachusetts, USA. · Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK. · Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. · Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, D.C., USA. · Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York, USA. ·Gut · Pubmed #28634199.

ABSTRACT: OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38‚ÄČ615 CONCLUSIONS: We have identified

2 Article Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. 2017

Fang, Jun / Jia, Jinping / Makowski, Matthew / Xu, Mai / Wang, Zhaoming / Zhang, Tongwu / Hoskins, Jason W / Choi, Jiyeon / Han, Younghun / Zhang, Mingfeng / Thomas, Janelle / Kovacs, Michael / Collins, Irene / Dzyadyk, Marta / Thompson, Abbey / O'Neill, Maura / Das, Sudipto / Lan, Qi / Koster, Roelof / Anonymous1181133 / Anonymous1191133 / Anonymous1201133 / Stolzenberg-Solomon, Rachael S / Kraft, Peter / Wolpin, Brian M / Jansen, Pascal W T C / Olson, Sara / McGlynn, Katherine A / Kanetsky, Peter A / Chatterjee, Nilanjan / Barrett, Jennifer H / Dunning, Alison M / Taylor, John C / Newton-Bishop, Julia A / Bishop, D Timothy / Andresson, Thorkell / Petersen, Gloria M / Amos, Christopher I / Iles, Mark M / Nathanson, Katherine L / Landi, Maria Teresa / Vermeulen, Michiel / Brown, Kevin M / Amundadottir, Laufey T. ·Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. · Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. · Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. · Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA. · Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA. · Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. · Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. · Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. · Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA. · Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York City, New York 10065, USA. · Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA. · Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK. · Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK. · Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA. · Translational Medicine and Human Genetics, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ·Nat Commun · Pubmed #28447668.

ABSTRACT: Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.