Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Dagfinn Aune
Based on 11 articles published since 2010
(Why 11 articles?)
||||

Between 2010 and 2020, D. Aune wrote the following 11 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
1 Review Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. 2015

Keum, NaNa / Greenwood, Darren C / Lee, Dong Hoon / Kim, Rockli / Aune, Dagfinn / Ju, Woong / Hu, Frank B / Giovannucci, Edward L. ·Departments of Nutrition and Epidemiology (NK, DHL, FBH, ELG) and Department of Social and Behavioral Sciences (RK), Harvard School of Public Health, Boston, MA · Division of Biostatistics, University of Leeds, Leeds, UK (DCG) · Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (DA) · Department of Epidemiology and Biostatistics, Imperial College London, London, UK (DA) · Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, Republic of Korea (WJ) · Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (FBH, ELG). ·J Natl Cancer Inst · Pubmed #25757865.

ABSTRACT: BACKGROUND: Adiposity, measured by body mass index, is implicated in carcinogenesis. While adult weight gain has diverse advantages over body mass index in measuring adiposity, systematic reviews on adult weight gain in relation to adiposity-related cancers are lacking. METHODS: PubMed and Embase were searched through September 2014 for prospective observational studies investigating the relationship between adult weight gain and the risk of 10 adiposity-related cancers. Dose-response meta-analyses were performed using a random-effects model to estimate summary relative risk (RR) and 95% confidence interval (CI) for each cancer type. All statistical tests were two-sided. RESULTS: A total of 50 studies were included. For each 5 kg increase in adult weight gain, the summary relative risk was 1.11 (95% CI = 1.08 to 1.13) for postmenopausal breast cancer among no- or low-hormone replacement therapy (HRT) users, 1.39 (95% CI = 1.29 to 1.49) and 1.09 (95% CI = 1.02 to 1.16) for postmenopausal endometrial cancer among HRT nonusers and users, respectively, 1.13 (95% CI = 1.03 to 1.23) for postmenopausal ovarian cancer among no or low HRT users, 1.09 (95% CI = 1.04 to 1.13) for colon cancer in men. The relative risk of kidney cancer comparing highest and lowest level of adult weight gain was 1.42 (95% CI = 1.11 to 1.81). Adult weight gain was unrelated to cancers of the breast (premenopausal women, postmenopausal HRT users), prostate, colon (women), pancreas, and thyroid. An increase in risk associated with adult weight gain for breast cancer was statistically significantly greater among postmenopausal women (P(heterogeneity) = .001) and HRT nonusers (P(heterogeneity) = .001); that for endometrial cancer was alike among HRT nonusers (P(heterogeneity) = .04). CONCLUSIONS: Avoiding adult weight gain itself may confer protection against certain types of cancers, particularly among HRT nonusers.

2 Review Height and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. 2012

Aune, Dagfinn / Vieira, Ana Rita / Chan, Doris Sau Man / Navarro Rosenblatt, Deborah A / Vieira, Rui / Greenwood, Darren C / Cade, Janet E / Burley, Victoria J / Norat, Teresa. ·Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, Paddington, London, UK. d.aune@imperial.ac.uk ·Cancer Causes Control · Pubmed #22689322.

ABSTRACT: BACKGROUND: Greater height has been associated with increased risk of several cancers, but epidemiological data on height and pancreatic cancer are inconclusive. We conducted a systematic review and meta-analysis of prospective studies to clarify these results. METHODS: PubMed and several other databases were searched up to September 2011. Prospective studies of height and pancreatic cancer were included. Summary relative risks were estimated by the use of a random effects model. RESULTS: We identified twelve cohort studies that were included in the meta-analysis. The summary RR per 5-cm increase in height was 1.07 (95 % CI: 1.03-1.12, I (2) = 57 %). The results were similar among men and women. The summary estimate was attenuated when we included results from two pooled analyses together with these studies, summary RR = 1.03 (95 % CI: 1.00-1.07, I (2) = 44 %). CONCLUSIONS: This meta-analysis of cohort studies provides further evidence that greater adult attained height is associated with increased pancreatic cancer risk. However, given the unexplained heterogeneity, further studies are needed before a conclusion can be drawn.

3 Review Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. 2012

Aune, D / Chan, D S M / Vieira, A R / Navarro Rosenblatt, D A / Vieira, R / Greenwood, D C / Cade, J E / Burley, V J / Norat, T. ·Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK. d.aune@imperial.ac.uk ·Ann Oncol · Pubmed #22539563.

ABSTRACT: BACKGROUND: Dietary carbohydrates, glycemic load and glycemic index have been hypothesized to influence pancreatic cancer risk, but epidemiological studies have been inconsistent. We conducted a systematic review and meta-analysis of prospective studies to clarify these results. METHODS: PubMed and several other databases were searched for prospective studies of intake of carbohydrates, glycemic index and glycemic load and pancreatic cancer up to September 2011. Summary relative risks were estimated using a random effects model. RESULTS: Ten cohort studies (13 publications) were included in the meta-analysis. The summary relative risk (RR) per 10 glycemic index units was 1.02 [95% confidence interval (CI): 0.93-1.12, I(2) = 0%], per 50 glycemic load units was 1.03 (95% CI: 0.93-1.14, I(2) = 10%), per 100 g/day of total carbohydrates was 0.97 (95% CI: 0.81-1.16, I(2) = 35%), and per 25 g/day of sucrose intake was 1.05 (95% CI: 0.85-1.23, I(2) = 53%). A positive association was observed with fructose intake, summary RR = 1.22 (95% CI: 1.08-1.37, I(2) = 0%) per 25 g/day. CONCLUSIONS: This meta-analysis does not support an association between diets high in glycemic index, glycemic load, total carbohydrates or sucrose and pancreatic cancer risk. The finding of an increased risk with fructose intake warrants further investigation in studies with better adjustment for confounding and in non-American populations.

4 Review Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose-response meta-analysis of prospective studies. 2012

Aune, D / Greenwood, D C / Chan, D S M / Vieira, R / Vieira, A R / Navarro Rosenblatt, D A / Cade, J E / Burley, V J / Norat, T. ·Department of Epidemiology and Biostatistics, Imperial College London, London, UK. d.aune@imperial.ac.uk ·Ann Oncol · Pubmed #21890910.

ABSTRACT: BACKGROUND: Questions remain about the shape of the dose-response relationship between body mass index (BMI) and pancreatic cancer risk, possible confounding by smoking, and differences by gender or geographic location. Whether abdominal obesity increases risk is unclear. METHODS: We conducted a systematic review and meta-analysis of prospective studies of the association between BMI, abdominal fatness and pancreatic cancer risk and searched PubMed and several other databases up to January 2011. Summary relative risks (RRs) were calculated using a random-effects model. RESULTS: Twenty-three prospective studies of BMI and pancreatic cancer risk with 9504 cases were included. The summary RR for a 5-unit increment was 1.10 [95% confidence interval (CI) 1.07-1.14, I(2) = 19%] and results were similar when stratified by gender and geographic location. There was evidence of a non-linear association, P(non-linearity) = 0.005; however, among nonsmokers, there was increased risk even within the 'normal' BMI range. The summary RR for a 10-cm increase in waist circumference was 1.11 (95% CI 1.05-1.18, I(2) = 0%) and for a 0.1-unit increment in waist-to-hip ratio was 1.19 (95% CI 1.09-1.31, I(2) = 11%). CONCLUSIONS: Both general and abdominal fatness increases pancreatic cancer risk. Among nonsmokers, risk increases even among persons within the normal BMI range.

5 Article Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition. 2020

Obón-Santacana, Mireia / Luján-Barroso, Leila / Freisling, Heinz / Naudin, Sabine / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Rebours, Vinciane / Kühn, Tilman / Katzke, Verena / Boeing, Heiner / Tjønneland, Anne / Olsen, Anja / Overvad, Kim / Lasheras, Cristina / Rodríguez-Barranco, Miguel / Amiano, Pilar / Santiuste, Carmen / Ardanaz, Eva / Khaw, Kay-Thee / Wareham, Nicholas J / Schmidt, Julie A / Aune, Dagfinn / Trichopoulou, Antonia / Thriskos, Paschalis / Peppa, Eleni / Masala, Giovanna / Grioni, Sara / Tumino, Rosario / Panico, Salvatore / Bueno-de-Mesquita, Bas / Sciannameo, Veronica / Vermeulen, Roel / Sonestedt, Emily / Sund, Malin / Weiderpass, Elisabete / Skeie, Guri / González, Carlos A / Riboli, Elio / Duell, Eric J. ·Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain. · Department of Nursing of Public Health, Mental Health and Maternity and Child Health School of Nursing, Universitat de Barcelona, Barcelona, Spain. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, Lyon, France. · CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France. · Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, DHU Unity, AP-HP, Clichy, and Paris-Diderot University, Paris, France. · Inserm UMR1149, DHU Unity, and Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Reserach Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Hellenic Health Foundation, Athens, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M. P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy. · Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Unit of Epidemiology, Regional Health Service ASL TO3, Turin, Italy. · Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands. · Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · International Agency for Research on Cancer, Lyon, France. · Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. ·Int J Cancer · Pubmed #31107546.

ABSTRACT: Four epidemiologic studies have assessed the association between nut intake and pancreatic cancer risk with contradictory results. The present study aims to investigate the relation between nut intake (including seeds) and pancreatic ductal adenocarcinoma (PDAC) risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Cox proportional hazards models were used to estimate hazards ratio (HR) and 95% confidence intervals (95% CI) for nut intake and PDAC risk. Information on intake of nuts was obtained from the EPIC country-specific dietary questionnaires. After a mean follow-up of 14 years, 476,160 participants were eligible for the present study and included 1,283 PDAC cases. No association was observed between consumption of nuts and PDAC risk (highest intake vs nonconsumers: HR, 0.89; 95% CI, 0.72-1.10; p-trend = 0.70). Furthermore, no evidence for effect-measure modification was observed when different subgroups were analyzed. Overall, in EPIC, the highest intake of nuts was not statistically significantly associated with PDAC risk.

6 Article Healthy lifestyle and the risk of pancreatic cancer in the EPIC study. 2019

Naudin, Sabine / Viallon, Vivian / Hashim, Dana / Freisling, Heinz / Jenab, Mazda / Weiderpass, Elisabete / Perrier, Flavie / McKenzie, Fiona / Bueno-de-Mesquita, H Bas / Olsen, Anja / Tjønneland, Anne / Dahm, Christina C / Overvad, Kim / Mancini, Francesca R / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Katzke, Verena / Kaaks, Rudolf / Bergmann, Manuela / Boeing, Heiner / Peppa, Eleni / Karakatsani, Anna / Trichopoulou, Antonia / Pala, Valeria / Masala, Giovana / Panico, Salvatore / Tumino, Rosario / Sacerdote, Carlotta / May, Anne M / van Gils, Carla H / Rylander, Charlotta / Borch, Kristin Benjaminsen / Chirlaque López, María Dolores / Sánchez, Maria-Jose / Ardanaz, Eva / Quirós, José Ramón / Amiano Exezarreta, Pilar / Sund, Malin / Drake, Isabel / Regnér, Sara / Travis, Ruth C / Wareham, Nick / Aune, Dagfinn / Riboli, Elio / Gunter, Marc J / Duell, Eric J / Brennan, Paul / Ferrari, Pietro. ·Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France. · Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. · Nutritional Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Director Office, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Environment and Radiation section, Agency for Research on Cancer, World Health Organization, Lyon, France. · Departement for Determinants of Chronic Diseases (Former), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepathology, University Medical Center, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark. · CESP, Faculté de médecine (USVQ), Université Paris-Sud, INSERM, Université Paris-Saclay, Villejuif, France. · Inserm UMR1018, Institut Gustave Roussy, Villejuif, France. · Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, France. · Inserm UMR1149, DHU Unit, Paris-Diderot University, Paris, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, ATTIKON University Hospital of Athens, Haidari, Greece. · School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy. · Department of Clinical and Experimental Medecine, University Federico II, Naples, Italy. · Cancer Registry and Histopathology Department, Civic M.P.Arezzo Hospital, Ragusa, Italy. · Unit of Cancer Epidemiology, Città della Salute e della Scienza University, Hospital and Center for Cancer Prevention (CPO), Turin, Italy. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain. · Spanish Consortium for Research and Public Health (CIBERESP), Madrid, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria, Universidad de Granada, Granada, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Directorate, Asturias, Spain. · Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain. · Department of Surgical and Preoperative Sciences, Umeå University, Umeå, Sweden. · Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom. · Department of Nutrition, Bjørknes University College, Oslo, Norway. · Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France. · Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France. ferrarip@iarc.fr. ·Eur J Epidemiol · Pubmed #31564045.

ABSTRACT: Pancreatic cancer (PC) is a highly fatal cancer with currently limited opportunities for early detection and effective treatment. Modifiable factors may offer pathways for primary prevention. In this study, the association between the Healthy Lifestyle Index (HLI) and PC risk was examined. Within the European Prospective Investigation into Cancer and Nutrition cohort, 1113 incident PC (57% women) were diagnosed from 400,577 participants followed-up for 15 years (median). HLI scores combined smoking, alcohol intake, dietary exposure, physical activity and, in turn, overall and central adiposity using BMI (HLI

7 Article Methodological issues in a prospective study on plasma concentrations of persistent organic pollutants and pancreatic cancer risk within the EPIC cohort. 2019

Gasull, Magda / Pumarega, José / Kiviranta, Hannu / Rantakokko, Panu / Raaschou-Nielsen, Ole / Bergdahl, Ingvar A / Sandanger, Torkjel Manning / Goñi, Fernando / Cirera, Lluís / Donat-Vargas, Carolina / Alguacil, Juan / Iglesias, Mar / Tjønneland, Anne / Overvad, Kim / Mancini, Francesca Romana / Boutron-Ruault, Marie-Christine / Severi, Gianluca / Johnson, Theron / Kühn, Tilman / Trichopoulou, Antonia / Karakatsani, Anna / Peppa, Eleni / Palli, Domenico / Pala, Valeria / Tumino, Rosario / Naccarati, Alessio / Panico, Salvatore / Verschuren, Monique / Vermeulen, Roel / Rylander, Charlotta / Nøst, Therese Haugdahl / Rodríguez-Barranco, Miguel / Molinuevo, Amaia / Chirlaque, María-Dolores / Ardanaz, Eva / Sund, Malin / Key, Tim / Ye, Weimin / Jenab, Mazda / Michaud, Dominique / Matullo, Giuseppe / Canzian, Federico / Kaaks, Rudolf / Nieters, Alexandra / Nöthlings, Ute / Jeurnink, Suzanne / Chajes, Veronique / Matejcic, Marco / Gunter, Marc / Aune, Dagfinn / Riboli, Elio / Agudo, Antoni / Gonzalez, Carlos Alberto / Weiderpass, Elisabete / Bueno-de-Mesquita, Bas / Duell, Eric J / Vineis, Paolo / Porta, Miquel. ·Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · National Institute for Health and Welfare, Department of Health Security, Kuopio, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Biobank Research, Umeå University, Umeå, Sweden; Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden. · Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute; Public Health Laboratory in Gipuzkoa, Basque Government, San Sebastian, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB - Arrixaca, Murcia, Spain. · Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Universidad de Huelva, Huelva, Spain. · Department of Pathology, Hospital del Mar (PSMar), Barcelona, Spain. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark. · CESP, Faculté de Médecine - Univ. Paris-Sud, Faculté de Médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France; Gustave Roussy, Villejuif, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain. · Hellenic Health Foundation, Athens, Greece. · Hellenic Health Foundation, Athens, Greece; 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Cancer Registry and Histopathology Department, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy. · Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. · Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria, Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB - Arrixaca, Murcia, Spain; Department of Health and Social Sciences, University of Murcia, Murcia, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Biobank Research, Umeå University, Umeå, Sweden; Department of Medical Epidemiology and Biostatistics Karolinska Institutet, Stockholm, Sweden. · Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), Lyon, France. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department Medical Sciences, University of Torino, Italian Institute for Genomic Medicine -IIGM/HuGeF, Torino, Italy. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Center for Chronic Immunodeficiency, Molecular Epidemiology, University Medical Center Freiburg, Freiburg, Germany. · Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany. · Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. · Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-Idibell), Barcelona, Spain. · Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Medical Epidemiology and Biostatistics Karolinska Institutet, Stockholm, Sweden; Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway; Genetic Epidemiology Group, Folkhälsan Research Center, Faculty of Medicine, University of Helsinki, Helsinki, Finland. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM), Turin, Italy; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Catalonia, Spain; Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Electronic address: mporta@imim.es. ·Environ Res · Pubmed #30529143.

ABSTRACT: BACKGROUND: The use of biomarkers of environmental exposure to explore new risk factors for pancreatic cancer presents clinical, logistic, and methodological challenges that are also relevant in research on other complex diseases. OBJECTIVES: First, to summarize the main design features of a prospective case-control study -nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort- on plasma concentrations of persistent organic pollutants (POPs) and pancreatic cancer risk. And second, to assess the main methodological challenges posed by associations among characteristics and habits of study participants, fasting status, time from blood draw to cancer diagnosis, disease progression bias, basis of cancer diagnosis, and plasma concentrations of lipids and POPs. Results from etiologic analyses on POPs and pancreatic cancer risk, and other analyses, will be reported in future articles. METHODS: Study subjects were 1533 participants (513 cases and 1020 controls matched by study centre, sex, age at blood collection, date and time of blood collection, and fasting status) enrolled between 1992 and 2000. Plasma concentrations of 22 POPs were measured by gas chromatography - triple quadrupole mass spectrometry (GC-MS/MS). To estimate the magnitude of the associations we calculated multivariate-adjusted odds ratios by unconditional logistic regression, and adjusted geometric means by General Linear Regression Models. RESULTS: There were differences among countries in subjects' characteristics (as age, gender, smoking, lipid and POP concentrations), and in study characteristics (as time from blood collection to index date, year of last follow-up, length of follow-up, basis of cancer diagnosis, and fasting status). Adjusting for centre and time of blood collection, no factors were significantly associated with fasting status. Plasma concentrations of lipids were related to age, body mass index, fasting, country, and smoking. We detected and quantified 16 of the 22 POPs in more than 90% of individuals. All 22 POPs were detected in some participants, and the smallest number of POPs detected in one person was 15 (median, 19) with few differences by country. The highest concentrations were found for p,p'-DDE, PCBs 153 and 180 (median concentration: 3371, 1023, and 810 pg/mL, respectively). We assessed the possible occurrence of disease progression bias (DPB) in eight situations defined by lipid and POP measurements, on one hand, and by four factors: interval from blood draw to index date, tumour subsite, tumour stage, and grade of differentiation, on the other. In seven of the eight situations results supported the absence of DPB. CONCLUSIONS: The coexistence of differences across study centres in some design features and participant characteristics is of relevance to other multicentre studies. Relationships among subjects' characteristics and among such characteristics and design features may play important roles in the forthcoming analyses on the association between plasma concentrations of POPs and pancreatic cancer risk.

8 Article Dietary folate intake and pancreatic cancer risk: Results from the European prospective investigation into cancer and nutrition. 2019

Park, Jin Young / Bueno-de-Mesquita, H Bas / Ferrari, Pietro / Weiderpass, Elisabete / de Batlle, Jordi / Tjønneland, Anne / Kyro, Cecilie / Rebours, Vinciane / Boutron-Ruault, Marie-Christine / Mancini, Francesca Romana / Katzke, Verena / Kühn, Tilman / Boeing, Heiner / Trichopoulou, Antonia / La Vecchia, Carlo / Kritikou, Maria / Masala, Giovanna / Pala, Valeria / Tumino, Rosario / Panico, Salvatore / Peeters, Petra H / Skeie, Guri / Merino, Susana / Duell, Eric J / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, Maria-Dolores / Ardanaz, Eva / Gylling, Björn / Schneede, Jörn / Ericson, Ulrika / Sternby, Hanna / Khaw, Kay-Tee / Bradbury, Kathryn E / Huybrechts, Inge / Aune, Dagfinn / Vineis, Paolo / Slimani, Nadia. ·International Agency for Research on Cancer, Lyon, France. · National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · School of Public Health, Imperial College London, London, United Kingdom. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway. · Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Group of Translational Research in Respiratory Medicine, IRBLleida, Hospital Universitari Arnau de Vilanova and Santa Maria, Lleida, Spain. · Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Pancreatology Unit, Beaujon Hospital, Clichy, France. · INSERM-UMR 1149, University Paris 7, France. · CESP, INSERM U1018, University of Paris-Sud, UVSQ, Université Paris-Saclay, France. · Gustave Roussy, Villejuif, France. · German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Germany. · Hellenic Health Foundation, Athens, Greece. · Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy. · Epidemiology and Prevention Unit, IRCCS Foundation National Cancer Institute, Milan, Italy. · Cancer Registry and Histopathology Department, 'Civic-M.P. Arezzo' Hospital, ASP Ragusa, Italy. · Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht. · Public Health Directorate, Asturias, Spain. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. · Dirección de Salud Pública y Adicciones, Gobierno Vasco, Vitoria, Spain. · Instituto de Investigación Sanitaria Biodonostia, San Sebastián, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden. · Department of Clinical Pharmacology, Pharmacology and Clinical Neurosciences, Umeå University, Umeå, Sweden. · Diabetes and Cardiovascular disease, Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Sweden. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Sweden. · Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom. · Bjørknes University College, Oslo, Norway. · IIGM Foundation, Turin, Italy. ·Int J Cancer · Pubmed #30178496.

ABSTRACT: Pancreatic cancer (PC) has an exceptionally low survival rate and primary prevention strategies are limited. Folate plays an important role in one-carbon metabolism and has been associated with the risk of several cancers, but not consistently with PC risk. We aimed to investigate the association between dietary folate intake and PC risk, using the standardised folate database across 10 European countries. A total of 477,206 participants were followed up for 11 years, during which 865 incident primary PC cases were recorded. Folate intake was energy-adjusted using the residual method. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. In multivariable analyses stratified by age, sex, study centre and adjusted for energy intake, smoking status, BMI, educational level, diabetes status, supplement use and dietary fibre intake, we found no significant association between folate intake and PC risk: the HR of PC risk for those in the highest quartile of folate intake (≥353 μg/day) compared to the lowest (<241 μg/day) was 0.81 (95% CI: 0.51, 1.31; p

9 Article Circulating concentrations of vitamin D in relation to pancreatic cancer risk in European populations. 2018

van Duijnhoven, Fränzel J B / Jenab, Mazda / Hveem, Kristian / Siersema, Peter D / Fedirko, Veronika / Duell, Eric J / Kampman, Ellen / Halfweeg, Anouk / van Kranen, Henk J / van den Ouweland, Jody M W / Weiderpass, Elisabete / Murphy, Neil / Langhammer, Arnulf / Ness-Jensen, Eivind / Olsen, Anja / Tjønneland, Anne / Overvad, Kim / Cadeau, Claire / Kvaskoff, Marina / Boutron-Ruault, Marie-Christine / Katzke, Verena A / Kühn, Tilman / Boeing, Heiner / Trichopoulou, Antonia / Kotanidou, Anastasia / Kritikou, Maria / Palli, Domenico / Agnoli, Claudia / Tumino, Rosario / Panico, Salvatore / Matullo, Giuseppe / Peeters, Petra / Brustad, Magritt / Olsen, Karina Standahl / Lasheras, Cristina / Obón-Santacana, Mireia / Sánchez, María-José / Dorronsoro, Miren / Chirlaque, Maria-Dolores / Barricarte, Aurelio / Manjer, Jonas / Almquist, Martin / Renström, Frida / Ye, Weimin / Wareham, Nick / Khaw, Kay-Tee / Bradbury, Kathryn E / Freisling, Heinz / Aune, Dagfinn / Norat, Teresa / Riboli, Elio / Bueno-de-Mesquita, H B As. ·National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands. · International Agency for Research on Cancer (IARC-WHO), Lyon, France. · HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway. · Department of Gastroenterology and Hepatology, University Medical Center Utrecht, The Netherlands. · Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands. · Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. · Department of Clinical Chemistry, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Cancer Registry of Norway, Institute for Population-based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, F-94805, France. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece. · Department of Critical Care Medicine and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, (Italy). · Dipartimento di medicina clinica e chirurgia, Federico II university, Naples, Italy. · Department of Medical Sciences, University of Torino, Torino, Italy. · Italian Institute for Genomic Medicine (IIGM/HuGeF), Torino, Italy. · Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom. · Oviedo University, Asturias, Spain. · Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · CIBER de Epidemiología y Salud Pública (CIBERESP), Spain. · Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · Navarra Institute for Health Research (IdiSNA) Pamplona, Spain. · Department of Surgery, Lund University, Skåne University Hospital Malmö, Malmö, Sweden. · Department of Surgery, Endocrine-Sarcoma unit, Skane University Hospital, Lund, Sweden. · Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden. · Department of Biobank Research, Umeå University, Umeå, Sweden. · The Medical Biobank at Umeå University, Umeå, Sweden. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · University of Cambridge, Cambridge, United Kingdom. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. ·Int J Cancer · Pubmed #29114875.

ABSTRACT: Evidence from in vivo, in vitro and ecological studies are suggestive of a protective effect of vitamin D against pancreatic cancer (PC). However, this has not been confirmed by analytical epidemiological studies. We aimed to examine the association between pre-diagnostic circulating vitamin D concentrations and PC incidence in European populations. We conducted a pooled nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Nord-Trøndelag Health Study's second survey (HUNT2) cohorts. In total, 738 primary incident PC cases (EPIC n = 626; HUNT2 n = 112; median follow-up = 6.9 years) were matched to 738 controls. Vitamin D [25(OH)D

10 Article Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. 2017

Duell, Eric J / Lujan-Barroso, Leila / Sala, Núria / Deitz McElyea, Samantha / Overvad, Kim / Tjonneland, Anne / Olsen, Anja / Weiderpass, Elisabete / Busund, Lill-Tove / Moi, Line / Muller, David / Vineis, Paolo / Aune, Dagfinn / Matullo, Giuseppe / Naccarati, Alessio / Panico, Salvatore / Tagliabue, Giovanna / Tumino, Rosario / Palli, Domenico / Kaaks, Rudolf / Katzke, Verena A / Boeing, Heiner / Bueno-de-Mesquita, H B As / Peeters, Petra H / Trichopoulou, Antonia / Lagiou, Pagona / Kotanidou, Anastasia / Travis, Ruth C / Wareham, Nick / Khaw, Kay-Tee / Ramon Quiros, Jose / Rodríguez-Barranco, Miguel / Dorronsoro, Miren / Chirlaque, María-Dolores / Ardanaz, Eva / Severi, Gianluca / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Brennan, Paul / Gunter, Marc / Scelo, Ghislaine / Cote, Greg / Sherman, Stuart / Korc, Murray. ·Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Medicine, Indiana University School of Medicine, Indianapolis, IN. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway. · Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. · School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom. · Human Genetics Foundation (HuGeF), Turin, Italy. · Department of Medical Sciences, University of Turin, Turin, Italy. · Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy. · Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Registry and Histopathology Unit, "Civic - M.P, Arezzo" Hospital, ASP, Ragusa, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany. · Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece. · Department of Epidemiology, Harvard School of Public Health, Boston, MA. · Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. · Public Health Directorate, Asturias, Spain. · Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada. · CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Basque Regional Health Department, San Sebatian, Spain. · Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain. · Navarra Public Health Institute, Pamplona, Spain. · IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France. · Gustave Roussy, Villejuif, France. · Beaujon Hospital, Pancreatology Unit, Clichy, France. · INSERM, University Paris, France. · International Agency for Research on Cancer (IARC), Lyon, France. · Medical University of South Carolina, Charleston, SC. · Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN. · Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN. ·Int J Cancer · Pubmed #28542740.

ABSTRACT: Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).

11 Article Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: A nested case-control study. 2017

Huang, Jiaqi / Zagai, Ulrika / Hallmans, Göran / Nyrén, Olof / Engstrand, Lars / Stolzenberg-Solomon, Rachael / Duell, Eric J / Overvad, Kim / Katzke, Verena A / Kaaks, Rudolf / Jenab, Mazda / Park, Jin Young / Murillo, Raul / Trichopoulou, Antonia / Lagiou, Pagona / Bamia, Christina / Bradbury, Kathryn E / Riboli, Elio / Aune, Dagfinn / Tsilidis, Konstantinos K / Capellá, Gabriel / Agudo, Antonio / Krogh, Vittorio / Palli, Domenico / Panico, Salvatore / Weiderpass, Elisabete / Tjønneland, Anne / Olsen, Anja / Martínez, Begoña / Redondo-Sanchez, Daniel / Chirlaque, Maria-Dolores / Hm Peeters, Petra / Regnér, Sara / Lindkvist, Björn / Naccarati, Alessio / Ardanaz, Eva / Larrañaga, Nerea / Boutron-Ruault, Marie-Christine / Rebours, Vinciane / Barré, Amélie / Bueno-de-Mesquita, H B As / Ye, Weimin. ·Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden. · Department of Public Health and Clinical Nutrition, Umeå University, Umeå, Sweden. · Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. · Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain. · Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark. · Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Prevention and Implementation Group, Section of Early Detection and Prevention, Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France. · Hellenic Health Foundation, Athens, Greece. · WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. · Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA. · Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. · Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. · Translational Research Laboratory, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain. · Unit of Nutrition and Cancer. Cancer Epidemiology Research Program. Catalan Institute of Oncology-IDIBELL. L'Hospitalet de Llobregat, Barcelona, Spain. · Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy. · Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy. · Dipartimento di medicina clinica e chirurgia Federico II, Naples, Italy. · Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. · Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. · Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Danish Cancer Society Research Center, Copenhagen, Denmark. · Andalusian School of Public Health, Instituto De Investigación Biosanitaria Ibs, Granada, Spain. · CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. · Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs, Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. · Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain. · Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain. · Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. · Department of Surgery, Institution of Clinical Sciences Malmö, Lund University, Malmö, Sweden. · Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden. · Molecular and Genetic Epidemiology Unit, Human Genetics Foundation, Turin, Italy. · Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. · Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Spain. · Hormones and Women's Health Team, INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Villejuif, F-94805, France. · Université Paris Sud, UMRS 1018, Villejuif, F-94805, France. · Institut Gustave Roussy, Villejuif, F-94805, France. · Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France. · Université Paris Sud and Gastroenterology Unit, Hôpitaux Universitaires Paris Sud, CHU de Bicêtre, AP-HP, Le Kremlin Bicêtre, France. · Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. · Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands. · Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. · Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. · The Medical Biobank at Umeå University, Umeå, Sweden. ·Int J Cancer · Pubmed #28032715.

ABSTRACT: The association between H. pylori infection and pancreatic cancer risk remains controversial. We conducted a nested case-control study with 448 pancreatic cancer cases and their individually matched control subjects, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, to determine whether there was an altered pancreatic cancer risk associated with H. pylori infection and chronic corpus atrophic gastritis. Conditional logistic regression models were applied to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs), adjusted for matching factors and other potential confounders. Our results showed that pancreatic cancer risk was neither associated with H. pylori seropositivity (OR = 0.96; 95% CI: 0.70, 1.31) nor CagA seropositivity (OR = 1.07; 95% CI: 0.77, 1.48). We also did not find any excess risk among individuals seropositive for H. pylori but seronegative for CagA, compared with the group seronegative for both antibodies (OR = 0.94; 95% CI: 0.63, 1.38). However, we found that chronic corpus atrophic gastritis was non-significantly associated with an increased pancreatic cancer risk (OR = 1.35; 95% CI: 0.77, 2.37), and although based on small numbers, the excess risk was particularly marked among individuals seronegative for both H. pylori and CagA (OR = 5.66; 95% CI: 1.59, 20.19, p value for interaction < 0.01). Our findings provided evidence supporting the null association between H. pylori infection and pancreatic cancer risk in western European populations. However, the suggested association between chronic corpus atrophic gastritis and pancreatic cancer risk warrants independent verification in future studies, and, if confirmed, further studies on the underlying mechanisms.