Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Pancreatic Neoplasms: HELP
Articles by Kristin E. Anderson
Based on 33 articles published since 2010
(Why 33 articles?)
||||

Between 2010 and 2020, K. E. Anderson wrote the following 33 articles about Pancreatic Neoplasms.
 
+ Citations + Abstracts
Pages: 1 · 2
1 Review Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies. 2015

Genkinger, J M / Kitahara, C M / Bernstein, L / Berrington de Gonzalez, A / Brotzman, M / Elena, J W / Giles, G G / Hartge, P / Singh, P N / Stolzenberg-Solomon, R Z / Weiderpass, E / Adami, H-O / Anderson, K E / Beane-Freeman, L E / Buring, J E / Fraser, G E / Fuchs, C S / Gapstur, S M / Gaziano, J M / Helzlsouer, K J / Lacey, J V / Linet, M S / Liu, J J / Park, Y / Peters, U / Purdue, M P / Robien, K / Schairer, C / Sesso, H D / Visvanathan, K / White, E / Wolk, A / Wolpin, B M / Zeleniuch-Jacquotte, A / Jacobs, E J. ·Department of Epidemiology, Mailman School of Public Health, Columbia University, New York Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York jg3081@columbia.edu. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda. · Division of Cancer Etiology, City of Hope National Medical Center, Duarte. · Westat, Rockville. · Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, DHHS, Bethesda, USA. · Cancer Epidemiology Centre, Cancer Council of Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. · Department of Epidemiology, Biostatistics and Population Medicine and The Center for Health Research, Loma Linda University School of Medicine, Loma Linda, USA. · Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø Department of Research, Cancer Registry of Norway, Oslo, Norway Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland. · Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Department of Epidemiology, Harvard School of Public Health, Boston. · Division of Epidemiology and Community Health, School of Public Health, and Masonic Cancer Center, University of Minnesota, Minneapolis. · Department of Epidemiology, Harvard School of Public Health, Boston Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. · Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston Department of Medical Oncology, Dana-Farber Cancer Institute, Boston. · Epidemiology Research Program, American Cancer Society, Atlanta. · Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts Veterans Epidemiology Research and Information Center, Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston. · The Prevention & Research Center, Mercy Medical Center, Baltimore Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda Division of Public Health Sciences, Washington University School of Medicine, St Louis. · Fred Hutchinson Cancer Research Center, Seattle Department of Epidemiology, University of Washington, Seattle. · Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington. · Department of Epidemiology, Harvard School of Public Health, Boston Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston. · Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore Department of Medical Oncology, Sidney Kimmel Cancer Center, John Hopkins School of Medicine, Baltimore, USA. · Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. · Department of Population Health and Perlmutter Cancer Center, New York University, New York, USA. ·Ann Oncol · Pubmed #26347100.

ABSTRACT: BACKGROUND: Body mass index (BMI), a measure of obesity typically assessed in middle age or later, is known to be positively associated with pancreatic cancer. However, little evidence exists regarding the influence of central adiposity, a high BMI during early adulthood, and weight gain after early adulthood on pancreatic cancer risk. DESIGN: We conducted a pooled analysis of individual-level data from 20 prospective cohort studies in the National Cancer Institute BMI and Mortality Cohort Consortium to examine the association of pancreatic cancer mortality with measures of central adiposity (e.g. waist circumference; n = 647 478; 1947 pancreatic cancer deaths), BMI during early adulthood (ages 18-21 years) and BMI change between early adulthood and cohort enrollment, mostly in middle age or later (n = 1 096 492; 3223 pancreatic cancer deaths). Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression models. RESULTS: Higher waist-to-hip ratio (HR = 1.09, 95% CI 1.02-1.17 per 0.1 increment) and waist circumference (HR = 1.07, 95% CI 1.00-1.14 per 10 cm) were associated with increased risk of pancreatic cancer mortality, even when adjusted for BMI at baseline. BMI during early adulthood was associated with increased pancreatic cancer mortality (HR = 1.18, 95% CI 1.11-1.25 per 5 kg/m(2)), with increased risk observed in both overweight and obese individuals (compared with BMI of 21.0 to <23 kg/m(2), HR = 1.36, 95% CI 1.20-1.55 for BMI 25.0 < 27.5 kg/m(2), HR = 1.48, 95% CI 1.20-1.84 for BMI 27.5 to <30 kg/m(2), HR = 1.43, 95% CI 1.11-1.85 for BMI ≥30 kg/m(2)). BMI gain after early adulthood, adjusted for early adult BMI, was less strongly associated with pancreatic cancer mortality (HR = 1.05, 95% CI 1.01-1.10 per 5 kg/m(2)). CONCLUSIONS: Our results support an association between pancreatic cancer mortality and central obesity, independent of BMI, and also suggest that being overweight or obese during early adulthood may be important in influencing pancreatic cancer mortality risk later in life.

2 Review Dairy products and pancreatic cancer risk: a pooled analysis of 14 cohort studies. 2014

Genkinger, J M / Wang, M / Li, R / Albanes, D / Anderson, K E / Bernstein, L / van den Brandt, P A / English, D R / Freudenheim, J L / Fuchs, C S / Gapstur, S M / Giles, G G / Goldbohm, R A / Håkansson, N / Horn-Ross, P L / Koushik, A / Marshall, J R / McCullough, M L / Miller, A B / Robien, K / Rohan, T E / Schairer, C / Silverman, D T / Stolzenberg-Solomon, R Z / Virtamo, J / Willett, W C / Wolk, A / Ziegler, R G / Smith-Warner, S A. ·Department of Epidemiology, Mailman School of Public Health, Columbia University, New York jg3081@columbia.edu. · Department of Epidemiology, Harvard School of Public Health, Boston Department of Biostatistics, Harvard School of Public Health, Boston. · Department of Epidemiology, Harvard School of Public Health, Boston. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda. · Division of Epidemiology and Community Health, School of Public Health, Masonic Cancer Center, University of Minnesota, Minneapolis. · Division of Cancer Etiology, Department of Population Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, USA. · Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands. · Cancer Epidemiology Centre, Cancer Council of Victoria, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. · Department of Social and Preventive Medicine, University at Buffalo, State University of New York, Buffalo. · Division of Medical Oncology, Dana-Farber Cancer Institute, Boston Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. · Epidemiology Research Program, American Cancer Society, Atlanta, USA. · Department of Prevention and Health, TNO Quality of Life, Leiden, The Netherlands. · Division of Nutritional Epidemiology, National Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden. · Cancer Prevention Institute of California, Fremont, USA. · Department of Social and Preventive Medicine, University of Montreal, Montreal. · Dalla Lana School of Public Health, University of Toronto, Toronto, Canada. · Department of Epidemiology and Biostatistics, School of Public Health and Health Services, George Washington University, Washington, DC. · Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA. · Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland. · Department of Epidemiology, Harvard School of Public Health, Boston Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston Department of Nutrition, Harvard School of Public Health, Boston, USA. · Department of Epidemiology, Harvard School of Public Health, Boston Department of Nutrition, Harvard School of Public Health, Boston, USA. ·Ann Oncol · Pubmed #24631943.

ABSTRACT: Pancreatic cancer has few early symptoms, is usually diagnosed at late stages, and has a high case-fatality rate. Identifying modifiable risk factors is crucial to reducing pancreatic cancer morbidity and mortality. Prior studies have suggested that specific foods and nutrients, such as dairy products and constituents, may play a role in pancreatic carcinogenesis. In this pooled analysis of the primary data from 14 prospective cohort studies, 2212 incident pancreatic cancer cases were identified during follow-up among 862 680 individuals. Adjusting for smoking habits, personal history of diabetes, alcohol intake, body mass index (BMI), and energy intake, multivariable study-specific hazard ratios (MVHR) and 95% confidence intervals (CIs) were calculated using the Cox proportional hazards models and then pooled using a random effects model. There was no association between total milk intake and pancreatic cancer risk (MVHR = 0.98, 95% CI = 0.82-1.18 comparing ≥500 with 1-69.9 g/day). Similarly, intakes of low-fat milk, whole milk, cheese, cottage cheese, yogurt, and ice-cream were not associated with pancreatic cancer risk. No statistically significant association was observed between dietary (MVHR = 0.96, 95% CI = 0.77-1.19) and total calcium (MVHR = 0.89, 95% CI = 0.71-1.12) intake and pancreatic cancer risk overall when comparing intakes ≥1300 with <500 mg/day. In addition, null associations were observed for dietary and total vitamin D intake and pancreatic cancer risk. Findings were consistent within sex, smoking status, and BMI strata or when the case definition was limited to pancreatic adenocarcinoma. Overall, these findings do not support the hypothesis that consumption of dairy foods, calcium, or vitamin D during adulthood is associated with pancreatic cancer risk.

3 Review Folate intake and risk of pancreatic cancer: pooled analysis of prospective cohort studies. 2011

Bao, Ying / Michaud, Dominique S / Spiegelman, Donna / Albanes, Demetrius / Anderson, Kristin E / Bernstein, Leslie / van den Brandt, Piet A / English, Dallas R / Freudenheim, Jo L / Fuchs, Charles S / Giles, Graham G / Giovannucci, Edward / Goldbohm, R Alexandra / Håkansson, Niclas / Horn-Ross, Pamela L / Jacobs, Eric J / Kitahara, Cari M / Marshall, James R / Miller, Anthony B / Robien, Kim / Rohan, Thomas E / Schatzkin, Arthur / Stevens, Victoria L / Stolzenberg-Solomon, Rachael Z / Virtamo, Jarmo / Wolk, Alicja / Ziegler, Regina G / Smith-Warner, Stephanie A. ·Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. ·J Natl Cancer Inst · Pubmed #22034634.

ABSTRACT: BACKGROUND: Epidemiological studies evaluating the association between folate intake and risk of pancreatic cancer have produced inconsistent results. The statistical power to examine this association has been limited in previous studies partly because of small sample size and limited range of folate intake in some studies. METHODS: We analyzed primary data from 14 prospective cohort studies that included 319,716 men and 542,948 women to assess the association between folate intake and risk of pancreatic cancer. Folate intake was assessed through a validated food-frequency questionnaire at baseline in each study. Study-specific relative risks (RRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models and then pooled using a random effects model. All statistical tests were two-sided. RESULTS: During 7-20 years of follow-up across studies, 2195 pancreatic cancers were identified. No association was observed between folate intake and risk of pancreatic cancer in men and women (highest vs lowest quintile: dietary folate intake, pooled multivariable RR = 1.06, 95% CI = 0.90 to 1.25, P(trend) = .47; total folate intake [dietary folate and supplemental folic acid], pooled multivariable RR = 0.96, 95% CI = 0.80 to 1.16, P(trend) = .90). No between-study heterogeneity was observed (for dietary folate, P(heterogeneity) = .15; for total folate, P(heterogeneity) = .22). CONCLUSION: Folate intake was not associated with overall risk of pancreatic cancer in this large pooled analysis.

4 Article Association between MICA polymorphisms, s-MICA levels, and pancreatic cancer risk in a population-based case-control study. 2019

Onyeaghala, Guillaume / Lane, John / Pankratz, Nathan / Nelson, Heather H / Thyagarajan, Bharat / Walcheck, Bruce / Anderson, Kristin E / Prizment, Anna E. ·Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, United States of America. · University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States of America. · Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States of America. · Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States of America. ·PLoS One · Pubmed #31166958.

ABSTRACT: BACKGROUND: Pancreatic tumor cells may avoid immune surveillance by releasing the transmembrane major histocompatibility complex class I chain-related A (MICA) protein in soluble form (s-MICA). We hypothesized that the presence of the A5.1 polymorphism in the MICA gene, which encodes a truncated MICA protein, is associated with higher s-MICA levels and increased pancreatic cancer risk. METHODS: MICA alleles and s-MICA levels were measured in 121 pancreatic cancer cases and 419 controls. General linear regression with a log transformation assessed geometric means of s-MICA levels across MICA alleles. Unconditional logistic regression was used to calculate the odds ratio (OR) and 95% confidence intervals (CI) for pancreatic cancer associated with MICA alleles. RESULTS: After multivariate adjustment, participants with at least one copy of the A5.1 allele versus no A5.1 allele had 1.35 (95% CI: 1.05-1.74) times greater s-MICA levels (1.65 times higher for cases and 1.28, for controls) and increased risk of pancreatic cancer (OR = 1.91, 95% CI: 1.05-3.48). CONCLUSIONS: Our study suggests higher risk of pancreatic cancer among those with the MICA A5.1 polymorphism, which may be explained by an increase in s-MICA secretion and impaired immune response. IMPACT: These findings provide further evidence at the genetic and molecular level of the important role of MICA in pancreatic cancer development, and may have important implications with regards to pancreatic cancer screening.

5 Article Intake of methyl-related nutrients and risk of pancreatic cancer in a population-based case-control study in Minnesota. 2018

Marley, Andrew R / Fan, Hao / Hoyt, Margaret L / Anderson, Kristin E / Zhang, Jianjun. ·Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, 1050 Wishard Boulevard, IN, 46202, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 420 Delaware Avenue SE, Minneapolis, MN, 55455, USA. · Masonic Cancer Center, University of Minnesota, 425 East River Road, Minneapolis, MN, 55455, USA. · Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, 1050 Wishard Boulevard, IN, 46202, USA. JZ21@iu.edu. · Indiana University Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN, 46202, USA. JZ21@iu.edu. ·Eur J Clin Nutr · Pubmed #29904184.

ABSTRACT: BACKGROUND/OBJECTIVES: Folate, vitamin B SUBJECTS/METHODS: Cases (n = 150) were identified from all hospitals in the metropolitan areas of the Twin Cities and the Mayo Clinic, Minnesota. Controls (n = 459) were selected randomly from the general population and were frequency matched to cases by age, sex, and race. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for risk of pancreatic cancer in relation to intake of nutrients considered. RESULTS: Dietary intake of folate was associated with a reduced pancreatic cancer risk [OR (95% CI) for quartile (Q) 4 vs. Q1: 0.31 (0.12-0.78)]. A composite score (range from 2 to 8), reflecting combined dietary intake of folate and vitamin B CONCLUSIONS: Dietary folate intake was associated with a reduced pancreatic cancer risk, and this association became stronger when dietary intake of folate and vitamin B

6 Article Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. 2018

Antwi, Samuel O / Bamlet, William R / Pedersen, Katrina S / Chaffee, Kari G / Risch, Harvey A / Shivappa, Nitin / Steck, Susan E / Anderson, Kristin E / Bracci, Paige M / Polesel, Jerry / Serraino, Diego / La Vecchia, Carlo / Bosetti, Cristina / Li, Donghui / Oberg, Ann L / Arslan, Alan A / Albanes, Demetrius / Duell, Eric J / Huybrechts, Inge / Amundadottir, Laufey T / Hoover, Robert / Mannisto, Satu / Chanock, Stephen J / Zheng, Wei / Shu, Xiao-Ou / Stepien, Magdalena / Canzian, Federico / Bueno-de-Mesquita, Bas / Quirós, José Ramon / Zeleniuch-Jacquotte, Anne / Bruinsma, Fiona / Milne, Roger L / Giles, Graham G / Hébert, James R / Stolzenberg-Solomon, Rachael Z / Petersen, Gloria M. ·Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. · Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA. · Division of Oncology, Washington University, St. Louis, MO, USA. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA. · Cancer Prevention and Control Program, USA. · Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA. · Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. · Unit of Epidemiology and Biostatistics, Centro di Riferimento Oncologico, Aviano (PN), Italy. · Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. · Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy. · Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA. · Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA. · Department of Population Health, New York University School of Medicine, New York, NY, USA. · Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA. · Unit of Nutrition and Cancer, Bellvitge Biomedical Research Institute-IDIBELL, Catalan Institute of Oncology-ICO. L'Hospitalet de Llobregat, Barcelona, Spain. · International Agency for Research on Cancer, World Health Organization, France. · Department of Public Health Solutions, National Institute for Health and Welfare Helsinki, Finland. · Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA. · Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. · Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, UK. · Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Pantai Valley, Kuala Lumpur, Malaysia. · Public Health Directorate, Asturias, Spain. · Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. · Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, and Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia. ·Carcinogenesis · Pubmed #29800239.

ABSTRACT: Diets with high inflammatory potential are suspected to increase risk for pancreatic cancer (PC). Using pooled analyses, we examined whether this association applies to populations from different geographic regions and population subgroups with varying risks for PC, including variation in ABO blood type. Data from six case-control studies (cases, n = 2414; controls, n = 4528) in the Pancreatic Cancer Case-Control Consortium (PanC4) were analyzed, followed by replication in five nested case-control studies (cases, n = 1268; controls, n = 4215) from the Pancreatic Cancer Cohort Consortium (PanScan). Two polymorphisms in the ABO locus (rs505922 and rs8176746) were used to infer participants' blood types. Dietary questionnaire-derived nutrient/food intake was used to compute energy-adjusted dietary inflammatory index (E-DII®) scores to assess inflammatory potential of diet. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted logistic regression. Higher E-DII scores, reflecting greater inflammatory potential of diet, were associated with increased PC risk in PanC4 [ORQ5 versus Q1=2.20, 95% confidence interval (CI) = 1.85-2.61, Ptrend < 0.0001; ORcontinuous = 1.20, 95% CI = 1.17-1.24], and PanScan (ORQ5 versus Q1 = 1.23, 95% CI = 0.92-1.66, Ptrend = 0.008; ORcontinuous = 1.09, 95% CI = 1.02-1.15). As expected, genotype-derived non-O blood type was associated with increased PC risk in both the PanC4 and PanScan studies. Stratified analyses of associations between E-DII quintiles and PC by genotype-derived ABO blood type did not show interaction by blood type (Pinteraction = 0.10 in PanC4 and Pinteraction=0.13 in PanScan). The results show that consuming a pro-inflammatory diet and carrying non-O blood type are each individually, but not interactively, associated with increased PC risk.

7 Article Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women. 2018

Quist, Arbor J L / Inoue-Choi, Maki / Weyer, Peter J / Anderson, Kristin E / Cantor, Kenneth P / Krasner, Stuart / Freeman, Laura E Beane / Ward, Mary H / Jones, Rena R. ·Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD. · Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC. · Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD. · Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN. · Prevention and Etiology Research Program, Masonic Cancer Center, University of Minnesota, Minneapolis, MN. · La Verne, CA. ·Int J Cancer · Pubmed #28921575.

ABSTRACT: Nitrate and nitrite are precursors of N-nitroso compounds (NOC), probable human carcinogens that cause pancreatic tumors in animals. Disinfection by-products (DBP) exposures have also been linked with digestive system cancers, but few studies have evaluated relationships with pancreatic cancer. We investigated the association of pancreatic cancer with these drinking water contaminants and dietary nitrate/nitrite in a cohort of postmenopausal women in Iowa (1986-2011). We used historical monitoring and treatment data to estimate levels of long-term average nitrate and total trihalomethanes (TTHM; the sum of the most prevalent DBP class) and the duration exceeding one-half the maximum contaminant level (>½ MCL; 5 mg/L nitrate-nitrogen, 40 µg/L TTHM) among participants on public water supplies (PWS) >10 years. We estimated dietary nitrate and nitrite intakes using a food frequency questionnaire. We computed hazard ratios (HR) and 95% confidence intervals (CI) using Cox regression and evaluated nitrate interactions with smoking and vitamin C intake. We identified 313 cases among 34,242 women, including 152 with >10 years PWS use (N = 15,710). Multivariable models of average nitrate showed no association with pancreatic cancer (HR

8 Article Soluble MICA is elevated in pancreatic cancer: Results from a population based case-control study. 2017

Onyeaghala, Guillaume / Nelson, Heather H / Thyagarajan, Bharat / Linabery, Amy M / Panoskaltsis-Mortari, Angela / Gross, Myron / Anderson, Kristin E / Prizment, Anna E. ·Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota. · University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota. · Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota. · Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota. ·Mol Carcinog · Pubmed #28470829.

ABSTRACT: Pancreatic cancer is diagnosed at a late stage and has one of the highest cancer mortality rates in the United States, creating an urgent need for novel early detection tools. A candidate biomarker for use in early detection is the soluble MHC class I-related chain A (s-MICA) ligand, which pancreatic tumors shed to escape immune detection. The objective of this study was to define the association between s-MICA levels and pancreatic cancer, in a population-based case-control study. S-MICA was measured in 143 pancreatic cancer cases and 459 controls. Unconditional logistic regression was used to calculate odds ratio (OR) for pancreatic cancer and 95% confidence intervals (CI). There was a positive association between increasing s-MICA levels and pancreatic cancer: compared to the lowest tertile, the ORs for pancreatic cancer were 1.25 (95%CI: 0.75-2.07) and 2.10 (95%CI: 1.29-3.42) in the second and highest tertiles, respectively (P-trend = 0.02). Our study supports previous work demonstrating a positive association between plasma s-MICA levels and pancreatic cancer.

9 Article Association between Alcohol Consumption, Folate Intake, and Risk of Pancreatic Cancer: A Case-Control Study. 2017

Yallew, Winta / Bamlet, William R / Oberg, Ann L / Anderson, Kristin E / Olson, Janet E / Sinha, Rashmi / Petersen, Gloria M / Stolzenberg-Solomon, Rachael Z / Jansen, Rick J. ·Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. Bamlet.William4@mayo.edu. · Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. Oberg.Ann@mayo.edu. · Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA. ander116@umn.edu. · Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. Olson.Janet@mayo.edu. · Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA. sinhar@mail.nih.gov. · Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. Petersen.Gloria@mayo.edu. · Department of Epidemiology, National Institutes of Health, Bethesda, MD 20850, USA. Rachael.Solomon@nih.gov. · Department of Public Health, North Dakota State University, Fargo, ND 58102, USA. rick.jansen@ndsu.edu. ·Nutrients · Pubmed #28468303.

ABSTRACT: Pancreatic cancer is one of the most fatal common cancers affecting both men and women, representing about 3% of all new cancer cases in the United States. In this study, we aimed to investigate the association of pancreatic cancer risk with alcohol consumption as well as folate intake. We performed a case-control study of 384 patients diagnosed with pancreatic cancer from May 2004 to December 2009 and 983 primary care healthy controls in a largely white population (>96%). Our findings showed no significant association between risk of pancreatic cancer and either overall alcohol consumption or type of alcohol consumed (drinks/day). Our study showed dietary folate intake had a modest effect size, but was significantly inversely associated with pancreatic cancer (odds ratio (OR) = 0.99, p < 0.0001). The current study supports the hypothesis that pancreatic cancer risk is reduced with higher food-based folate intake.

10 Article Dietary acrylamide and the risk of pancreatic cancer in the International Pancreatic Cancer Case-Control Consortium (PanC4). 2017

Pelucchi, C / Rosato, V / Bracci, P M / Li, D / Neale, R E / Lucenteforte, E / Serraino, D / Anderson, K E / Fontham, E / Holly, E A / Hassan, M M / Polesel, J / Bosetti, C / Strayer, L / Su, J / Boffetta, P / Duell, E J / La Vecchia, C. ·Department of Clinical Sciences and Community Health, University of Milan, Milan. · Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. · Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco. · Department of Gastrointestinal Medical Oncology, M.D. Anderson Cancer Center, University of Texas, Houston, USA. · Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia. · Department of Neurosciences, Psychology, Drug Research and Children's Health, University of Florence, Florence. · Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, Aviano (PN), Italy. · School of Public Health, University of Minnesota, Minneapolis. · Department of Epidemiology, Louisiana State University Health Sciences Center School of Public Health, New Orleans, USA. · Department of Epidemiology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy. · Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock. · The Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA. · Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. ·Ann Oncol · Pubmed #27836886.

ABSTRACT: Background: Occupational exposure to acrylamide was associated with excess mortality from pancreatic cancer, though in the absence of dose-risk relationship. Few epidemiological studies have examined the association between acrylamide from diet and pancreatic cancer risk. Patients and methods: We considered this issue in a combined set of 1975 cases of pancreatic cancer and 4239 controls enrolled in six studies of the Pancreatic Cancer Case-Control Consortium (PanC4). We calculated pooled odds ratios (ORs) and their 95% confidence intervals (CI) by estimating study-specific ORs through multivariate unconditional logistic regression models and pooling the obtained estimates using random-effects models. Results: Compared with the lowest level of estimated dietary acrylamide intake, the pooled ORs were 0.97 (95% CI, 0.79-1.19) for the second, 0.91 (95% CI, 0.71-1.16) for the third, and 0.92 (95% CI, 0.66-1.28) for the fourth (highest) quartile of intake. For an increase of 10 µg/day of acrylamide intake, the pooled OR was 0.96 (95% CI, 0.87-1.06), with heterogeneity between estimates (I2 = 67%). Results were similar across various subgroups, and were confirmed when using a one-stage modelling approach. Conclusions: This PanC4 pooled-analysis found no association between dietary acrylamide and pancreatic cancer.

11 Article Aspirin use and the incidence of breast, colon, ovarian, and pancreatic cancers in elderly women in the Iowa Women's Health Study. 2016

Vaughan, Lisa E / Prizment, Anna / Blair, Cindy K / Thomas, William / Anderson, Kristin E. ·Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 S. 2nd Street Suite 300, Minneapolis, MN, USA. · Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA. · Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA. · University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, 1300 S. 2nd Street Suite 300, Minneapolis, MN, USA. ander116@umn.edu. · Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA. ander116@umn.edu. ·Cancer Causes Control · Pubmed #27677628.

ABSTRACT: PURPOSE: Few studies have evaluated the chemopreventive effect of aspirin on the cancer risk in elderly women. We examined associations between frequency, dose, and duration of aspirin use with incidence of 719 aspirin-sensitive cancers (cancers of colon, pancreas, breast, and ovaries) in the Iowa Women's Health Study (IWHS), a prospective cohort of women over 70 years old. METHODS: Aspirin frequency, dose, and duration were self-reported in the 2004 IWHS questionnaire. Women were followed-up to 2011. Cancer cases were ascertained by linkage to the Iowa State Health Registry. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95 % confidence intervals (CI). RESULTS: Among the 14,386 women, 30 % were nonusers of aspirin; 34 % used low-dose aspirin, and 36 % used regular- or high-dose aspirin. Compared with nonuse of aspirin, the HRs (95 % CI) for incidence of aspirin-sensitive cancers were 0.87 (0.72-1.06) for regular to high doses of aspirin use, 0.95 (0.80-1.13) for aspirin use 6+ times per week, and 0.93 (0.74-1.17) for aspirin use for 10+ years. For cumulative aspirin use, HR (95 % CI) was 0.87 (0.70-1.09) for >60,000 mg of aspirin per year and 0.95 (0.75-1.21) for >280,000 mg of aspirin in their lifetime, versus nonuse of aspirin. Results were similar for the all-cause cancer death as an endpoint, with a significant inverse association observed between lifetime aspirin dose and cancer mortality [<95,000 mg vs nonuser HR 0.76 (0.61-0.95)]. CONCLUSIONS: These findings suggest that aspirin use may prevent incident breast, colon, pancreatic, and ovarian cancer in elderly women.

12 Article Disposition of the Dietary Mutagen 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline in Healthy and Pancreatic Cancer Compromised Humans. 2016

Malfatti, Michael A / Kuhn, Edward A / Turteltaub, Kenneth W / Vickers, Selwyn M / Jensen, Eric H / Strayer, Lori / Anderson, Kristin E. ·Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , 7000 East Avenue, L-452, Livermore, California 94550, United States. · University of Alabama , 1720 2nd Avenue South, Birmingham, Alabama 35233, United States. · University of Minnesota , Minneapolis, Minnesota 55455, United States. ·Chem Res Toxicol · Pubmed #26918625.

ABSTRACT: Pancreatic cancer is the fourth leading cause of cancer death in the U.S. Once diagnosed, prognosis is poor with a 5-year survival rate of less than 5%. Exposure to carcinogenic heterocyclic amines (HCAs) derived from cooked meat has been shown to be positively associated with pancreatic cancer risk. To evaluate the processes that determine the carcinogenic potential of HCAs for human pancreas, 14-carbon labeled 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), a putative human carcinogenic HCA found in well-done cooked meat, was administered at a dietary relevant dose to human volunteers diagnosed with pancreatic cancer undergoing partial pancreatectomy and healthy control volunteers. After (14)C-MeIQx exposure, blood and urine were collected for pharmacokinetic and metabolite analysis. MeIQx-DNA adducts levels were quantified by accelerator mass spectrometry from pancreatic tissue excised during surgery from the cancer patient group. Pharmacokinetic analysis of plasma revealed a rapid distribution of MeIQx with a plasma elimination half-life of approximately 3.5 h in 50% of the cancer patients and all of the control volunteers. In 2 of the 4 cancer patients, very low levels of MeIQx were detected in plasma and urine suggesting low absorption from the gut into the plasma. Urinary metabolite analysis revealed five MeIQx metabolites with 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid being the most abundant accounting for 25%-50% of the recovered 14-carbon/mL urine. There was no discernible difference in metabolite levels between the cancer patient volunteers and the control group. MeIQx-DNA adduct analysis of pancreas and duodenum tissue revealed adduct levels indistinguishable from background levels. Although other meat-derived HCA mutagens have been shown to bind DNA in pancreatic tissue, indicating that exposure to HCAs from cooked meat cannot be discounted as a risk factor for pancreatic cancer, the results from this current study show that exposure to a single dietary dose of MeIQx does not readily form measurable DNA adducts under the conditions of the experiment.

13 Article Role of survivor bias in pancreatic cancer case-control studies. 2016

Hu, Zhen-Huan / Connett, John E / Yuan, Jian-Min / Anderson, Kristin E. ·Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee. Electronic address: zhu@mcw.edu. · Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis. · University of Pittsburgh Cancer Institute and Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA. · Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis. ·Ann Epidemiol · Pubmed #26688282.

ABSTRACT: PURPOSE: The purpose of this study was to evaluate the impact of survivor bias on pancreatic cancer case-control studies. METHODS: The authors constructed five case-loss scenarios based on the Iowa Women's Health Study cohort to reflect how case recruitment in population-based studies varies by case survival time. Risk factors for disease incidence included smoking, body mass index (BMI), waist circumference, diabetes, and alcohol consumption. Odds ratios (ORs) were estimated by conditional logistic regression and quantitatively compared by the interactions between risk factors and 3-month survival time. Additionally, Kaplan-Meier estimates for overall survival were compared within the subset cohort of pancreatic cancer cases. RESULTS: BMI and waist circumference showed a significant inverse relationship with survival time. Decreasing trends in ORs for BMI and waist circumference were observed with increasing case survival time. The interaction between BMI and survival time based on a cutpoint of 3 months was significant (P < .01) as was the interaction between waist circumference and survival time (P < .01). CONCLUSIONS: The findings suggested that case losses could result in survivor bias causing underestimated odds ratios for both BMI and waist circumference, whereas other risk factors were not significantly affected by case losses.

14 Article Vitamin D and pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium. 2015

Waterhouse, M / Risch, H A / Bosetti, C / Anderson, K E / Petersen, G M / Bamlet, W R / Cotterchio, M / Cleary, S P / Ibiebele, T I / La Vecchia, C / Skinner, H G / Strayer, L / Bracci, P M / Maisonneuve, P / Bueno-de-Mesquita, H B / Zaton Ski, W / Lu, L / Yu, H / Janik-Koncewicz, K / Polesel, J / Serraino, D / Neale, R E / Anonymous4011075. ·Division of Population Health, QIMR Berghofer Medical Research Institute, Herston Centre for Research Excellence in Sun and Health, Queensland University of Technology, Kelvin Grove, Australia. · Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, USA. · Department of Epidemiology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy. · Division of Epidemiology and Community Health, University of Minnesota, Minneapolis. · Department of Health Sciences Research, Mayo Clinic, Rochester, USA. · Prevention and Cancer Control, Cancer Care Ontario, Toronto Dalla Lana School of Public Health, University of Toronto, Toronto. · Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Department of Surgery, University of Toronto, Toronto, Canada. · Division of Population Health, QIMR Berghofer Medical Research Institute, Herston. · Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy. · Truven Health Analytics, Durham. · Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA. · Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy. · National Institute for Public Health and the Environment, Bilthoven Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK. · Department of Epidemiology, The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland. · Epidemiology Program, University of Hawaii Cancer Center, Honolulu, USA. · Division of Population Health, QIMR Berghofer Medical Research Institute, Herston Centre for Research Excellence in Sun and Health, Queensland University of Technology, Kelvin Grove, Australia rachel.neale@qimrberghofer.edu.au. ·Ann Oncol · Pubmed #25977560.

ABSTRACT: BACKGROUND: The potential role of vitamin D in the aetiology of pancreatic cancer is unclear, with recent studies suggesting both positive and negative associations. PATIENTS AND METHODS: We used data from nine case-control studies from the International Pancreatic Cancer Case-Control Consortium (PanC4) to examine associations between pancreatic cancer risk and dietary vitamin D intake. Study-specific odds ratios (ORs) were estimated using multivariable logistic regression, and ORs were then pooled using a random-effects model. From a subset of four studies, we also calculated pooled estimates of association for supplementary and total vitamin D intake. RESULTS: Risk of pancreatic cancer increased with dietary intake of vitamin D [per 100 international units (IU)/day: OR = 1.13, 95% confidence interval (CI) 1.07-1.19, P = 7.4 × 10(-6), P-heterogeneity = 0.52; ≥230 versus <110 IU/day: OR = 1.31, 95% CI 1.10-1.55, P = 2.4 × 10(-3), P-heterogeneity = 0.81], with the association possibly stronger in people with low retinol/vitamin A intake. CONCLUSION: Increased risk of pancreatic cancer was observed with higher levels of dietary vitamin D intake. Additional studies are required to determine whether or not our finding has a causal basis.

15 Article Cholecystectomy, gallstones, tonsillectomy, and pancreatic cancer risk: a population-based case-control study in Minnesota. 2014

Zhang, J / Prizment, A E / Dhakal, I B / Anderson, K E. ·1] Department of Epidemiology, Indiana University, Richard M. Fairbanks School of Public Health at IUPUI, Indianapolis, IN 46202, USA [2] Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA. · Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA. · Department of Biostatistics, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA. · 1] Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA [2] Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. ·Br J Cancer · Pubmed #24667646.

ABSTRACT: BACKGROUND: Associations between medical conditions and pancreatic cancer risk are controversial and are thus evaluated in a study conducted during 1994-1998 in Minnesota. METHODS: Cases (n=215) were ascertained from hospitals in the metropolitan area of the Twin Cities and the Mayo Clinic. Controls (n=676) were randomly selected from the general population and frequency matched to cases by age and sex. The history of medical conditions was gathered with a questionnaire during in-person interviews. Odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic regression. RESULTS: After adjustment for confounders, subjects who had cholecystectomy or gallstones experienced a significantly higher risk of pancreatic cancer than those who did not (OR (95% CI): 2.11 (1.32-3.35) for cholecystectomy and 1.97 (1.23-3.12) for gallstones), whereas opposite results were observed for tonsillectomy (0.67 (0.48-0.94)). Increased risk associated with cholecystectomy was the greatest when it occurred ≤ 2 years before the cancer diagnosis (5.93 (2.36-15.7)) but remained statistically significant when that interval was ≥ 20 years (2.27 (1.16-4.32)). CONCLUSIONS: Cholecystectomy, gallstones, and tonsillectomy were associated with an altered risk of pancreatic cancer. Our study suggests that cholecystectomy increased risk but reverse causality may partially account for high risk associated with recent cholecystectomy.

16 Article Fatty acids found in dairy, protein and unsaturated fatty acids are associated with risk of pancreatic cancer in a case-control study. 2014

Jansen, Rick J / Robinson, Dennis P / Frank, Ryan D / Anderson, Kristin E / Bamlet, William R / Oberg, Ann L / Rabe, Kari G / Olson, Janet E / Sinha, Rashmi / Petersen, Gloria M / Stolzenberg-Solomon, Rachael Z. ·Division of Epidemiology Department of Health Sciences Research, Mayo Clinic, Rochester, MN. ·Int J Cancer · Pubmed #24590454.

ABSTRACT: Although many studies have investigated meat and total fat in relation to pancreatic cancer risk, few have investigated dairy, fish and specific fatty acids (FAs). We evaluated the association between intake of meat, fish, dairy, specific FAs and related nutrients and pancreatic cancer. In our American-based Mayo Clinic case-control study 384 cases and 983 controls frequency matched on recruitment age, race, sex and residence area (Minnesota, Wisconsin or Iowa, USA) between 2004 and 2009. All subjects provided demographic information and completed 144-item food frequency questionnaire. Logistic regression-calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) were adjusted for age, sex, cigarette smoking, body mass index and diabetes mellitus. Significant inverse association (trend p-value < 0.05) between pancreatic cancer and the groupings (highest vs. lowest consumption quintile OR [95% CI]) was as follows: meat replacement (0.67 [0.43-1.02]), total protein (0.58 [0.39-0.86]), vitamin B12 (0.67 [0.44, 1.01]), zinc (0.48 [0.32, 0.71]), phosphorus (0.62 [0.41, 0.93]), vitamin E (0.51 [0.33, 0.78]), polyunsaturated FAs (0.64 [0.42, 0.98]) and linoleic acid (FA 18:2) (0.62 [0.40-0.95]). Increased risk associations were observed for saturated FAs (1.48 [0.97-2.23]), butyric acid (FA 4:0) (1.77 [1.19-2.64]), caproic acid (FA 6:0) (2.15 [1.42-3.27]), caprylic acid (FA 8:0) (1.87 [1.27-2.76]) and capric acid (FA 10:0) (1.83 [1.23-2.74]). Our study suggests that eating a diet high in total protein and certain unsaturated FAs is associated with decreased risk of developing pancreatic cancer in a dose-dependent manner, whereas fats found in dairy increase risk.

17 Article Body mass index and risk of pancreatic cancer in a Chinese population. 2014

Untawale, Seema / Odegaard, Andrew O / Koh, Woon-Puay / Jin, Ai Zhen / Yuan, Jian-Min / Anderson, Kristin E. ·Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America ; Tacoma-Pierce County Health Department, Tacoma, Washington, United States of America. · Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America. · Duke-NUS Graduate Medical School Singapore, Singapore, Republic of Singapore ; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore. · National Registry of Diseases Office, Health Promotion Board, Singapore, Republic of Singapore. · University of Pittsburgh Cancer Institute, Division of Cancer Control and Population Sciences, Pittsburgh, Pennsylvania, United States of America ; Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America. · Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America ; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America. ·PLoS One · Pubmed #24454807.

ABSTRACT: Few studies have examined the association between body mass index (BMI: kg/m(2)) and pancreatic cancer risk in Asian populations. We examined this relationship in 51,251 Chinese men and women aged 45-74 who enrolled between 1993 and 1998 in the population based, prospective Singapore Chinese Health Study. Data were collected through in-person interviews. By December 31, 2011, 194 cohort participants had developed pancreatic cancer. A Cox proportional hazards model was used to estimate hazard ratios (HR) and their 95% confidence intervals (95% CI). We hypothesized the association between BMI and pancreatic cancer risk may vary by smoking status (ever v. never) and there was evidence for this as the interaction between BMI and smoking status was significant (p = 0.018). Among ever smokers, being classified as underweight (BMI <18.5 kg/m(2)), was associated with a significantly elevated risk of pancreatic cancer relative to smokers with a BMI of 21.5-24.4 kg/m(2) (HR = 1.99, 95% CI  =  1.03-3.84). This association was strengthened after exclusion of the first three years of follow-up time. Among never smokers, there was no association between BMI and pancreatic cancer risk. However, after excluding pancreatic cancer cases and person-years in the first three years of follow-up, never smokers with a BMI ≥ 27.5 kg/m(2) showed a suggestive increased risk of pancreatic cancer relative to never smokers with a BMI of 21.5-24.4 kg/m(2) (HR  =  1.75, 95% CI  =  0.93-3.3). In conclusion, Singaporean Chinese who were underweight with a history of smoking had an increased risk of developing pancreatic cancer, whereas there was no significant association between BMI and pancreatic cancer in never smokers.

18 Article Genetic variability in energy balance and pancreatic cancer risk in a population-based case-control study in Minnesota. 2014

Zhang, Jianjun / Dhakal, Ishwori B / Zhang, Xuemei / Prizment, Anna E / Anderson, Kristin E. ·From the *Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health at IUPUI; †Melvin Bren Simon Cancer Center, Indiana University, Indianapolis, IN; ‡Department of Biostatistics, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR; §Department of Molecular Biology, College of Life Sciences, Hebei United University, Tangshan, China; ∥Division of Epidemiology and Community Health, School of Public Health, and ¶Masonic Cancer Center, University of Minnesota, Minneapolis, MN. ·Pancreas · Pubmed #24201779.

ABSTRACT: OBJECTIVES: Accumulating evidence suggests that energy imbalance plays a role in pancreatic carcinogenesis. However, it remains unclear whether single-nucleotide polymorphisms (SNPs) in genes regulating energy homeostasis influence pancreatic cancer risk. We investigated this question in a case-control study conducted from 1994 to 1998. METHODS: Patients (n = 173) were ascertained from hospitals in the Twin Cities and Mayo Clinic, Minnesota. Control subjects (n = 476) were identified from the general population and frequency matched to patients by age and sex. Seven SNPs were evaluated in relation to pancreatic cancer using unconditional logistic regression. RESULTS: After adjustment for confounders, the leucine/proline or proline/proline genotype of the neuropeptide Y (NPY) gene rs16139 was associated with a lower risk than the leucine/leucine genotype (odds ratio, 0.40 [95% confidence interval, 0.15-0.91]). Conversely, an increased risk was observed for the glycine/arginine or arginine/arginine genotype of the adrenoceptor β2, surface (ADRB2) gene rs1042713 as compared with the glycine/glycine genotype (odds ratio, 1.52 [95% confidence interval, 1.01-2.31]). CONCLUSIONS: This study first reveals that SNPs in genes modulating energy intake (NPY) and energy expenditure (ADRB2) altered pancreatic cancer risk. If confirmed by other studies, our findings may shed new light on the etiology and prevention of pancreatic cancer.

19 Article Polymorphisms in metabolism/antioxidant genes may mediate the effect of dietary intake on pancreatic cancer risk. 2013

Jansen, Rick J / Robinson, Dennis P / Stolzenberg-Solomon, Rachael Z / Bamlet, William R / Tan, XiangLin / Cunningham, Julie M / Li, Ying / Rider, David N / Oberg, Ann L / Rabe, Kari G / Anderson, Kristin E / Sinha, Rashmi / Petersen, Gloria M. ·From the Divisions of *Epidemiology, and †Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN; ‡Department of Epidemiology, National Institutes of Health, Bethesda, MD; §Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN; and ∥Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD. ·Pancreas · Pubmed #24051964.

ABSTRACT: OBJECTIVES: A source of variation for inconsistent dietary-pancreatic cancer associations may be individuals carrying constitutional metabolism/antioxidant gene variants that differentially benefit compared to homozygous individuals. Seventy-six tag single-nucleotide polymorphisms were genotyped in 13 candidate genes to test differential associations with pancreatic adenocarcinoma. METHODS: A clinic-based case-control design was used to rapidly ascertain 251 cases and 970 frequency matched controls who provided blood samples and completed a 144-item food frequency questionnaire. Single-nucleotide polymorphisms were evaluated using a dominant genetic model and dietary categories split on controls' median intake. Logistic regression was used to calculate odds ratios and 95% confidence intervals, adjusted for potential confounders. RESULTS: Significant increased associations (Bonferroni corrected P ≤ 0.0007) were observed for carriers of greater than or equal to 1 minor allele for rs3816257 (glucosidase, α; acid [GAA]) and lower intake of deep-yellow vegetables (1.90 [1.28-2.83]); and carriers of no minor allele for rs12807961 (catalase [CAT]) and high total grains intake (2.48 [1.50-4.09]), whereas those with greater than or equal to 1 minor allele had a decreasing slope (across grains). The reference group was no minor alleles with low dietary intake. CONCLUSIONS: Interindividual variation in metabolism/antioxidant genes could interact with dietary intake to influence pancreatic cancer risk.

20 Article Allergies and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Case-Control Consortium. 2013

Olson, Sara H / Hsu, Meier / Satagopan, Jaya M / Maisonneuve, Patrick / Silverman, Debra T / Lucenteforte, Ersilia / Anderson, Kristin E / Borgida, Ayelet / Bracci, Paige M / Bueno-de-Mesquita, H Bas / Cotterchio, Michelle / Dai, Qi / Duell, Eric J / Fontham, Elizabeth H / Gallinger, Steven / Holly, Elizabeth A / Ji, Bu-Tian / Kurtz, Robert C / La Vecchia, Carlo / Lowenfels, Albert B / Luckett, Brian / Ludwig, Emmy / Petersen, Gloria M / Polesel, Jerry / Seminara, Daniela / Strayer, Lori / Talamini, Renato / Anonymous6300762. ·Department of Epidemiology and Biostatistics, 307 East 63rd Street, New York, NY 10065, USA. olsons@mskcc.org ·Am J Epidemiol · Pubmed #23820785.

ABSTRACT: In order to quantify the risk of pancreatic cancer associated with history of any allergy and specific allergies, to investigate differences in the association with risk according to age, gender, smoking status, or body mass index, and to study the influence of age at onset, we pooled data from 10 case-control studies. In total, there were 3,567 cases and 9,145 controls. Study-specific odds ratios and 95% confidence intervals were calculated by using unconditional logistic regression adjusted for age, gender, smoking status, and body mass index. Between-study heterogeneity was assessed by using the Cochran Q statistic. Study-specific odds ratios were pooled by using a random-effects model. The odds ratio for any allergy was 0.79 (95% confidence interval (CI): 0.62, 1.00) with heterogeneity among studies (P < 0.001). Heterogeneity was attributable to one study; with that study excluded, the pooled odds ratio was 0.73 (95% CI: 0.64, 0.84) (Pheterogeneity = 0.23). Hay fever (odds ratio = 0.74, 95% CI: 0.56, 0.96) and allergy to animals (odds ratio = 0.62, 95% CI: 0.41, 0.94) were related to lower risk, while there was no statistically significant association with other allergies or asthma. There were no major differences among subgroups defined by age, gender, smoking status, or body mass index. Older age at onset of allergies was slightly more protective than earlier age.

21 Article Duration of diabetes and pancreatic cancer in a case-control study in the Midwest and the Iowa Women's Health Study (IWHS) cohort. 2013

Henry, Sarah A / Prizment, Anna E / Anderson, Kristin E. ·Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA. ·JOP · Pubmed #23669472.

ABSTRACT: CONTEXT: Studies have shown a relationship between history of diabetes and the risk of pancreatic cancer; however, the temporal relation between diabetes and pancreatic cancer is not clearly established. OBJECTIVES: Diabetes and diabetes duration were examined in relation to pancreatic cancer in a population-based case-control study and prospective cohort. METHODS: Case-control study: pancreatic cancer cases (n=200) from the Midwest were frequency matched by age and sex to population controls (n=673). Logistic regression yielded odds ratios (ORs) and 95% confidence intervals (95% CI). Iowa Women's Health Study (IWHS) cohort: 292 incident pancreatic cancer cases occurred between 1986-2008 among 36,084 post-menopausal, initially cancer-free women. Diabetes status and diagnosis age were ascertained at baseline and follow-ups. Proportional hazards regression yielded hazard ratios (HR, 95% CI) for pancreatic cancer in relation to baseline diabetes. Time-dependent analyses accounted for diabetes diagnosed after baseline. A nested-case control analysis assessed diabetes duration as a risk factor. RESULTS: In the case-control study, compared to participants without diabetes, the multivariate ORs (95% CI) for pancreatic cancer were 2.35 (1.24-4.47) for those with diabetes and 4.00 (0.94-16.9), 2.79 (0.97-8.04), and 2.40 (0.97-5.98) for diabetes durations of 2-5 years, 5.1-10 years, and more than 10 years, respectively. In IWHS, compared to no diabetes, multivariate-adjusted HRs for pancreatic cancer were 1.86 (1.23-2.83) for baseline diabetes and 1.94 (1.40-2.69) adding diabetes during follow-up. In an IWHS nested case-control analysis, ORs were 1.70 (0.78-3.67), 2.62 (1.48-4.65), and 2.10 (1.36-3.24) for diabetes durations of 2-5 years, 5.1-10 years and more than 10 years, respectively, versus no diabetes. CONCLUSIONS: Diabetes is associated with pancreatic cancer risk and this is similar across different duration categories.

22 Article Meat-related mutagens and pancreatic cancer: null results from a clinic-based case-control study. 2013

Jansen, Rick J / Robinson, Dennis P / Frank, Ryan D / Stolzenberg-Solomon, Rachael Z / Bamlet, William R / Oberg, Ann L / Rabe, Kari G / Olson, Janet E / Petersen, Gloria M / Sinha, Rashmi / Anderson, Kristin E. ·Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA. ·Cancer Epidemiol Biomarkers Prev · Pubmed #23632817.

ABSTRACT: BACKGROUND: Pancreatic cancer is a devastating disease for which the role of dietary factors remains inconclusive. The study objective was to evaluate risk of pancreatic cancer associated with meat preparation methods and meat-related mutagen consumption using a clinic-based case-control design. METHODS: There were 384 cases and 983 controls; subjects provided demographic information and completed a 144-item food frequency questionnaire, which was used to estimate meat mutagen intake using the National Cancer Institute's CHARRED database (Bethesda, MD). Logistic regression was used to calculate ORs and 95% confidence intervals (CI), adjusted for factors including age, sex, cigarette smoking, body mass index, and diabetes mellitus. RESULTS: Overall, the findings were null with respect to meat mutagen intake and pancreatic cancer. CONCLUSIONS: The results do not support an association between well-done meat or meat-related mutagen intake and pancreatic cancer and contrast with generally increased risks reported in previous studies. IMPACT: These data contribute to evidence about pancreatic cancer and potentially carcinogenic compounds in meat.

23 Article Nutrients from fruit and vegetable consumption reduce the risk of pancreatic cancer. 2013

Jansen, Rick J / Robinson, Dennis P / Stolzenberg-Solomon, Rachael Z / Bamlet, William R / de Andrade, Mariza / Oberg, Ann L / Rabe, Kari G / Anderson, Kristin E / Olson, Janet E / Sinha, Rashmi / Petersen, Gloria M. ·Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. jansen.rick@mayo.edu ·J Gastrointest Cancer · Pubmed #23620017.

ABSTRACT: PURPOSE: Pancreatic cancer is a devastating disease for which the role of dietary factors remains inconclusive. Our objective was to evaluate the risk of pancreatic cancer associated with nutrients found in fruits and vegetables and nutrient supplementation using a clinic-based case-control design. METHODS: Our study included 384 rapidly ascertained cases and 983 controls frequency-matched on age at time of recruitment (in 5-year increments), race, sex, and region of residence. All subjects provided demographic information and completed a 144-item food frequency questionnaire in which they reported no change to their diet within 5 years prior to entering the study. Logistic regression was used to calculate odds ratios and 95 % confidence intervals, adjusted for age, sex, smoking, body mass index, energy intake, and alcohol consumption. RESULTS: Results show a significant (trend p value < 0.05) inverse association between pancreatic cancer and nutrient/supplement groupings in a dose-dependent manner including magnesium, potassium, selenium, alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein and zeaxanthin, niacin, total alpha-tocopherol, total vitamin A activity, vitamin B6, and vitamin C. Adjusting for diabetes or total sugar intake did not result in significant changes. CONCLUSION: We conclude that most nutrients obtained through consumption of fruits and vegetables may reduce the risk of developing pancreatic cancer.

24 Article Intake of fruits and vegetables and risk of pancreatic cancer in a pooled analysis of 14 cohort studies. 2012

Koushik, Anita / Spiegelman, Donna / Albanes, Demetrius / Anderson, Kristin E / Bernstein, Leslie / van den Brandt, Piet A / Bergkvist, Leif / English, Dallas R / Freudenheim, Jo L / Fuchs, Charles S / Genkinger, Jeanine M / Giles, Graham G / Goldbohm, R Alexandra / Horn-Ross, Pamela L / Männistö, Satu / McCullough, Marjorie L / Millen, Amy E / Miller, Anthony B / Robien, Kim / Rohan, Thomas E / Schatzkin, Arthur / Shikany, James M / Stolzenberg-Solomon, Rachael Z / Willett, Walter C / Wolk, Alicja / Ziegler, Regina G / Smith-Warner, Stephanie A. ·University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada. anita.koushik@umontreal.ca ·Am J Epidemiol · Pubmed #22875754.

ABSTRACT: Fruit and vegetable intake may protect against pancreatic cancer, since fruits and vegetables are rich in potentially cancer-preventive nutrients. Most case-control studies have found inverse associations between fruit and vegetable intake and pancreatic cancer risk, although bias due to reporting error cannot be ruled out. In most prospective studies, inverse associations have been weaker and imprecise because of small numbers of cases. The authors examined fruit and vegetable intake in relation to pancreatic cancer risk in a pooled analysis of 14 prospective studies from North America, Europe, and Australia (study periods between 1980 and 2005). Relative risks and 2-sided 95% confidence intervals were estimated separately for the 14 studies using the Cox proportional hazards model and were then pooled using a random-effects model. Of 862,584 men and women followed for 7-20 years, 2,212 developed pancreatic cancer. The pooled multivariate relative risks of pancreatic cancer per 100-g/day increase in intake were 1.01 (95% confidence interval (CI): 0.99, 1.03) for total fruits and vegetables, 1.01 (95% CI: 0.99, 1.03) for total fruits, and 1.02 (95% CI: 0.99, 1.06) for total vegetables. Associations were similar for men and women separately and across studies. These results suggest that fruit and vegetable intake during adulthood is not associated with a reduced pancreatic cancer risk.

25 Article Coffee, tea, and sugar-sweetened carbonated soft drink intake and pancreatic cancer risk: a pooled analysis of 14 cohort studies. 2012

Genkinger, Jeanine M / Li, Ruifeng / Spiegelman, Donna / Anderson, Kristin E / Albanes, Demetrius / Bergkvist, Leif / Bernstein, Leslie / Black, Amanda / van den Brandt, Piet A / English, Dallas R / Freudenheim, Jo L / Fuchs, Charles S / Giles, Graham G / Giovannucci, Edward / Goldbohm, R Alexandra / Horn-Ross, Pamela L / Jacobs, Eric J / Koushik, Anita / Männistö, Satu / Marshall, James R / Miller, Anthony B / Patel, Alpa V / Robien, Kim / Rohan, Thomas E / Schairer, Catherine / Stolzenberg-Solomon, Rachael / Wolk, Alicja / Ziegler, Regina G / Smith-Warner, Stephanie A. ·Mailman School of Public Health, 722 w 168th St, Rm 803, New York, NY 10032, USA. jg3081@columbia.edu ·Cancer Epidemiol Biomarkers Prev · Pubmed #22194529.

ABSTRACT: BACKGROUND: Coffee has been hypothesized to have pro- and anticarcinogenic properties, whereas tea may contain anticarcinogenic compounds. Studies assessing coffee intake and pancreatic cancer risk have yielded mixed results, whereas findings for tea intake have mostly been null. Sugar-sweetened carbonated soft drink (SSB) intake has been associated with higher circulating levels of insulin, which may promote carcinogenesis. Few prospective studies have examined SSB intake and pancreatic cancer risk; results have been heterogeneous. METHODS: In this pooled analysis from 14 prospective cohort studies, 2,185 incident pancreatic cancer cases were identified among 853,894 individuals during follow-up. Multivariate (MV) study-specific relative risks (RR) and 95% confidence intervals (CI) were calculated using Cox proportional hazards models and then pooled using a random-effects model. RESULTS: No statistically significant associations were observed between pancreatic cancer risk and intake of coffee (MVRR = 1.10; 95% CI, 0.81-1.48 comparing ≥900 to <0 g/d; 237g ≈ 8oz), tea (MVRR = 0.96; 95% CI, 0.78-1.16 comparing ≥400 to 0 g/d; 237g ≈ 8oz), or SSB (MVRR = 1.19; 95% CI, 0.98-1.46 comparing ≥250 to 0 g/d; 355g ≈ 12oz; P value, test for between-studies heterogeneity > 0.05). These associations were consistent across levels of sex, smoking status, and body mass index. When modeled as a continuous variable, a positive association was evident for SSB (MVRR = 1.06; 95% CI, 1.02-1.12). CONCLUSION AND IMPACT: Overall, no associations were observed for intakes of coffee or tea during adulthood and pancreatic cancer risk. Although we were only able to examine modest intake of SSB, there was a suggestive, modest positive association for risk of pancreatic cancer for intakes of SSB.

Next