Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Hearing Disorders: HELP
Articles by Amy Kimball
Based on 2 articles published since 2010
(Why 2 articles?)

Between 2010 and 2020, Amy Kimball wrote the following 2 articles about Hearing Disorders.
+ Citations + Abstracts
1 Review Mandibulofacial Dysostosis with Microcephaly: Mutation and Database Update. 2016

Huang, Lijia / Vanstone, Megan R / Hartley, Taila / Osmond, Matthew / Barrowman, Nick / Allanson, Judith / Baker, Laura / Dabir, Tabib A / Dipple, Katrina M / Dobyns, William B / Estrella, Jane / Faghfoury, Hanna / Favaro, Francine P / Goel, Himanshu / Gregersen, Pernille A / Gripp, Karen W / Grix, Art / Guion-Almeida, Maria-Leine / Harr, Margaret H / Hudson, Cindy / Hunter, Alasdair G W / Johnson, John / Joss, Shelagh K / Kimball, Amy / Kini, Usha / Kline, Antonie D / Lauzon, Julie / Lildballe, Dorte L / López-González, Vanesa / Martinezmoles, Johanna / Meldrum, Cliff / Mirzaa, Ghayda M / Morel, Chantal F / Morton, Jenny E V / Pyle, Louise C / Quintero-Rivera, Fabiola / Richer, Julie / Scheuerle, Angela E / Schönewolf-Greulich, Bitten / Shears, Deborah J / Silver, Josh / Smith, Amanda C / Temple, I Karen / Anonymous80847 / van de Kamp, Jiddeke M / van Dijk, Fleur S / Vandersteen, Anthony M / White, Sue M / Zackai, Elaine H / Zou, Ruobing / Anonymous90847 / Bulman, Dennis E / Boycott, Kym M / Lines, Matthew A. ·The Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada. · Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada. · Department of Genetics, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada. · Division of Medical Genetics, A. I. duPont Hospital for Children, Wilmington, Delaware. · Clinical Genetics Department, Belfast City Hospital, Belfast, UK. · Department of Pediatrics and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California. · Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington. · Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington. · Department of Medical Genetics, Westmead Hospital, Sydney, Australia. · The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada. · Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, Brazil. · Hunter Genetics, Newcastle, Waratah, Australia. · University of Newcastle, Newcastle - School of Medicine and Public Health, Faculty of Health, Callaghan, Australia. · Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark. · Department of Genetics, Permanente Medical Group, Roseville, California. · Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. · The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania. · Shodair Children's Hospital, Helena, Montana. · Medical Geneticist, Ottawa, Ontario, Canada. · Clinical Genetics and Metabolism, Floating Hospital for Children, Tufts Medical Center, Boston, Massachusetts. · West of Scotland Clinical Genetics Service, South Glasgow University Hospital, Glasgow, UK. · Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland. · Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK. · Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada. · Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain. · Grupo Clínico Vinculado al Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. · Department of Genetics, Sacramento Medical Center, Sacramento, California. · NSW Health Pathology, Newcastle, Australia. · West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, UK. · Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. · Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, California. · Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. · Genetic Counselling Clinic Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark. · Oxford Regional Genetics Service, The Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, UK. · Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. · Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK. · Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands. · Maritime Medical Genetics Service, IWKHealth Centre, Halifax, Nova Scotia, Canada. · Victoria Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Australia. · Department of Paediatrics, University of Melbourne, Melbourne, Australia. · Newborn Screening Ontario, The Children's Hospital of Eastern Ontario, Ottawa, Canada. · Metabolics and Newborn Screening, Department of Pediatrics, The Children's Hospital of Eastern Ontario, Ottawa, Canada. ·Hum Mutat · Pubmed #26507355.

ABSTRACT: Mandibulofacial dysostosis with microcephaly (MFDM) is a multiple malformation syndrome comprising microcephaly, craniofacial anomalies, hearing loss, dysmorphic features, and, in some cases, esophageal atresia. Haploinsufficiency of a spliceosomal GTPase, U5-116 kDa/EFTUD2, is responsible. Here, we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds. Pathogenic EFTUD2 variants comprise 76 distinct mutations and seven microdeletions. Among point mutations, missense substitutions are infrequent (14 out of 76; 18%) relative to stop-gain (29 out of 76; 38%), and splicing (33 out of 76; 43%) mutations. Where known, mutation origin was de novo in 48 out of 64 individuals (75%), dominantly inherited in 12 out of 64 (19%), and due to proven germline mosaicism in four out of 64 (6%). Highly penetrant clinical features include, microcephaly, first and second arch craniofacial malformations, and hearing loss; esophageal atresia is present in an estimated ∼27%. Microcephaly is virtually universal in childhood, with some adults exhibiting late "catch-up" growth and normocephaly at maturity. Occasionally reported anomalies, include vestibular and ossicular malformations, reduced mouth opening, atrophy of cerebral white matter, structural brain malformations, and epibulbar dermoid. All reported EFTUD2 mutations can be found in the EFTUD2 mutation database (http://databases.lovd.nl/shared/genes/EFTUD2).

2 Article Improvement in hearing loss over time in Cornelia de Lange syndrome. 2016

Janek, Kevin C / Smith, David F / Kline, Antonie D / Benke, James R / Chen, Mei-Ling / Kimball, Amy / Ishman, Stacey L. ·College of Medicine, University of Cincinnati, Cincinnati, OH, USA. · Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. · Harvey Institute of Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA. · Lake Erie College of Osteopathic Medicine, Erie, PA, USA. · Department of Audiology, St. Agnes Hospital, Baltimore, MD, USA. · Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. Electronic address: stacey.ishman@cchmc.org. ·Int J Pediatr Otorhinolaryngol · Pubmed #27368472.

ABSTRACT: OBJECTIVES: Patients with Cornelia de Lange Syndrome (CdLS) are reported to have conductive (CHL) and sensorineural hearing loss (SNHL), but there is little information pertaining to the progression of hearing loss over time. The goal of this study was to examine the prevalence of CHL and SNHL in adults and children with CdLS and look for changes in SNHL over time. METHODS: Retrospective chart review of patients with CdLS presenting to a CdLS clinic was conducted. Also, a written survey of clinical concerns was collected from additional patients/families seen in the clinic and through the Cornelia de Lange Foundation. RESULTS: Seventy-eight patients (50% female) were included in the chart review. Mean age was 16.8 ± 11.4 years (range-0.6-50 years) and mean age at diagnosis of hearing loss was 4.6 ± 10.6 years (n = 26). Five patients (6.4%) had severe to profound SNHL that improved with time, including 2 who had complete normalization of audiogram results. Thirty-five families/patients completed the clinical survey, and 45.5% of the families reported a noticeable improvement of hearing over time. CONCLUSIONS: Conductive hearing loss and SNHL are common in CdLS. More than 50% of the patients seen in an adult CdLS clinic reported improvement in hearing loss over time, and a subset of patients had an improvement in SNHL. In light of these findings, we recommend longitudinal evaluations of hearing loss in these patients with both auditory brainstem response and otoacoustic emissions testing if SNHL is identified.